当前位置: X-MOL 学术Phys. Rev. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lens-Free Optical Detection of Thermal Motion of a Submillimeter Sphere Diamagnetically Levitated in High Vacuum
Physical Review Applied ( IF 3.8 ) Pub Date : 2021-07-13 , DOI: 10.1103/physrevapplied.16.l011003
Fang Xiong 1 , Peiran Yin 1 , Tong Wu 1 , Han Xie 1 , Rui Li 2, 3, 4 , Yingchun Leng 1 , Yanan Li 1 , Changkui Duan 2, 3, 4 , Xi Kong 1 , Pu Huang 1 , Jiangfeng Du 2, 3, 4
Affiliation  

Levitated oscillators of millimeter or submillimeter size are particularly attractive due to their potential role in studying various fundamental problems and practical applications. One of the crucial issues towards these goals is to achieve efficient measurements of oscillator motion, although this remains a challenge. Here we theoretically propose a lens-free optical detection scheme, which can be used to detect the motion of a millimeter or submillimeter levitated oscillator with a measurement efficiency close to the standard quantum limit with a modest optical power. We demonstrate experimentally this scheme on a 0.5-mm-diameter microsphere that is diamagnetically levitated under high vacuum and room temperature, and the thermal motion is detected with high precision. Based on this system, an estimated acceleration sensitivity of 9.7×1010g/Hz is achieved, which is an improvement of more than 1 order of magnitude over the best value reported for a levitated mechanical system. Due to the stability of the system, the minimum resolved acceleration of 3.5×1012g is reached with measurement times of 105 s. This result is expected to have potential applications in the study of exotic interactions in the millimeter or submillimeter range and the realization of compact gravimeters and accelerometers.

中文翻译:

高真空中抗磁悬浮亚毫米球体热运动的无透镜光学检测

毫米或亚毫米尺寸的悬浮振荡器因其在研究各种基本问题和实际应用中的潜在作用而特别有吸引力。实现这些目标的关键问题之一是实现对振荡器运动的有效测量,尽管这仍然是一个挑战。在这里,我们从理论上提出了一种无透镜光学检测方案,该方案可用于检测毫米或亚毫米悬浮振荡器的运动,其测量效率接近标准量子极限,具有适度的光功率。我们在一个 0.5 毫米直径的微球体上通过实验证明了该方案,该微球体在高真空和室温下抗磁悬浮,并以高精度检测热运动。基于该系统,估计加速度灵敏度为9.7×10-10G/赫兹实现了,这比悬浮机械系统报告的最佳值提高了 1 个数量级以上。由于系统的稳定性,最小分辨加速度为3.5×10-12G 达到测量时间 105s。该结果有望在毫米或亚毫米范围内奇异相互作用的研究以及紧凑型重力计和加速度计的实现中具有潜在应用。
更新日期:2021-07-13
down
wechat
bug