当前位置: X-MOL 学术Phys. Rev. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Doping-induced Polar Defects Improve the Electrocaloric Performance ofBa0.9Sr0.1Hf0.1Ti0.9O3
Physical Review Applied ( IF 4.6 ) Pub Date : 2021-07-13 , DOI: 10.1103/physrevapplied.16.014033
Junning Li 1 , Jing Lv 1 , Dawei Zhang 1 , Lixue Zhang 1 , Xihong Hao 2 , Ming Wu 1 , Bai-Xiang Xu 3 , Mojca Otonicar 4 , Turab Lookman 5 , Brahim Dkhil 6 , Xiaojie Lou 1
Affiliation  

In materials science, intentional doping has been widely used to improve the properties of a variety of materials. However, such an approach is not yet exploited in the fast-growing field of electrocaloric materials, which represent a serious alternative for next-generation cooling systems. Here we demonstrate with Ba0.9Sr0.1Hf0.1Ti0.9O3, an ecofriendly ferroelectric material, that doping with 2% of Cu introduces defect dipoles into the ferroelectric matrix and results in (i) enhancement of the adiabatic temperature change ΔT by up to 54% while maintaining performance after a large number (up to 104) of electric field cycles, (ii) suppression of the parasitic irreversibility of ΔT between on-field and off-field states, and (iii) an alternative design of refrigeration cycle with a prepoled sample, allowing a two-field-step process showing both conventional (ΔT > 0) and inverse (ΔT < 0) responses when the field is sequentially varied. We also demonstrate that doping significantly increases the energy storage density (by up to 72%). The defect engineering approach therefore offers a path for designing ferroelectrics with improved electrocaloric performances. Beyond ferroelectrics, this strategy could also be promising in other solid-state caloric materials (magnetocalorics, elastocalorics, etc.).

中文翻译:

掺杂引起的极性缺陷改善Ba0.9Sr0.1Hf0.1Ti0.9O3的电热性能

在材料科学中,有意掺杂已被广泛用于改善各种材料的性能。然而,这种方法尚未在快速发展的电热材料领域中得到利用,电热材料代表了下一代冷却系统的重要替代品。这里我们用0.90.1高频0.10.93, 一种环保铁电材料, 掺杂 2% 将缺陷偶极子引入铁电矩阵并导致 (i) 绝热温度变化 Δ T增强高达 54%,同时在大量(高达104)电场周期,(ⅱ)Δ的寄生不可逆转抑制Ť之间-field和关闭-field状态,和(iii)冷冻循环的替代设计与prepoled样品,允许两字段步骤的过程显示了当场 顺序变化时的常规 (Δ T  > 0) 和逆 (Δ T < 0) 响应。我们还证明掺杂显着增加了能量存储密度(高达 72%)。因此,缺陷工程方法为设计具有改进电热性能的铁电体提供了途径。除了铁电体,这种策略在其他固态热材料(磁热、弹性热等)中也很有前景。
更新日期:2021-07-13
down
wechat
bug