当前位置: X-MOL 学术COMPEL › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bandpass NGD investigation of O-shape fully distributed structure with S-matrix modelling
COMPEL ( IF 0.7 ) Pub Date : 2021-07-14 , DOI: 10.1108/compel-01-2021-0019
Taochen Gu 1 , Fayu Wan 1 , Jamel Nebhen 2 , Nour Mohammad Murad 3 , Jérôme Rossignol 4 , Sebastien Lallechere 5 , Blaise Ravelo 1
Affiliation  

Purpose

The aim of this paper is to provide the theoretical conceptualization of a bandpass (BP) negative group delay (NGD) microstrip circuit. The main objective is to provide a theorization of the particular geometry of the microstrip circuit with experimental validation of the NGD effect.

Design/methodology/approach

The methodology followed in this work is organized in three steps. A theoretical model is established of equivalent S-parameters model using Y-matrix analysis. The GD analysis is also presented by showing that the circuit presents a possibility to generate NGD function around certain frequencies. To validate the theoretical model, as proof-of-concept (POC), a microstrip prototype is designed, fabricated and tested.

Findings

This work clearly highlighted the modelled (analytical design model), simulated (ADS simulation tool) and measured results are in good correlation. Relying on the proposed theoretical, numerical and experimental models, the BP NGD behaviour is validated successfully with GD responses specified by the NGD centre frequency: it is observed around 2.35 GHz, with an NGD value of about −2 ns.

Research limitations/implications

It is to be noticed the proposed GD analysis requires limitations of the theoretical NGD model. It is depicted and validated through a POC demonstrating that the circuit presents a possibility to generate NGD function around certain frequencies (assuming constraints around usable frequency and bandwidth).

Practical implications

The NGD O-shape topology developed in this work could be exploited in the future in the microwave and radiofrequency context. Thus, it is expected to develop GD equalization technique for radiofrequency and microwave filters, GD compensation of oscillators, filters and communication systems, design of broadband switch-less bi-directional amplifiers, efficient enhancement of feedforward amplifiers, design method of frequency independent phase shifters with negligible delay, synthesis method of arbitrary-angle beamforming antennas. The BP NGD behavior may also be successfully used for the reduction of resonance effect for the electronic compatibility (EMC) of electronic devices.

Social implications

The non-conventional NGD O-circuit theoretical development and validation through experimental POC could be exploited by academic and industrial developers in the area of wireless communications including, but not restricted to, 5-generation communication systems. The use of the remarkable NGD effect is also useful for the mitigation of electromagnetic interferences between electronic devices and more and more complex electromagnetic environment (current development of Internet of Things[ IoT]).

Originality/value

The originality of this work relies on the new NGD design proposed in this work including the extraction of S-matrix parameters of the microstrip novel structure designed. The validation process based upon an experimental POC showed very interesting levels of NGD O-circuit (nanosecond-GD duration).



中文翻译:

带S矩阵建模的O形全分布结构的带通NGD研究

目的

本文的目的是提供带通 (BP) 负群延迟 (NGD) 微带电路的理论概念。主要目标是通过 NGD 效应的实验验证来提供微带电路特定几何形状的理论。

设计/方法/方法

这项工作所遵循的方法分为三个步骤。利用Y矩阵分析建立了等效S参数模型的理论模型。GD 分析还通过显示电路提供了在某些频率附近生成 NGD 函数的可能性来呈现。为了验证理论模型,作为概念验证 (POC),设计、制造和测试了微带线原型。

发现

这项工作清楚地突出了建模(分析设计模型)、模拟(ADS 仿真工具)和测量结果之间的良好相关性。依靠所提出的理论、数值和实验模型,BP NGD 行为已通过 NGD 中心频率指定的 GD 响应成功验证:在 2.35 GHz 附近观察到,NGD 值约为 -2 ns。

研究限制/影响

需要注意的是,提议的 GD 分析需要理论 NGD 模型的局限性。它通过 POC 进行描述和验证,证明该电路提供了在某些频率附近生成 NGD 函数的可能性(假设可用频率和带宽有约束)。

实际影响

在这项工作中开发的 NGD O 形拓扑结构将来可以用于微波和射频环境。因此,有望开发射频和微波滤波器的GD均衡技术,振荡器、滤波器和通信系统的GD补偿,宽带无开关双向放大器的设计,前馈放大器的高效增强,频率无关移相器的设计方法具有可忽略延迟的任意角度波束成形天线的合成方法。BP NGD 行为还可成功用于减少电子设备电子兼容性 (EMC) 的共振效应。

社会影响

通过实验性 POC 的非常规 NGD O 电路理论开发和验证可以被无线通信领域的学术和工业开发人员利用,包括但不限于第 5 代通信系统。使用显着的 NGD 效应也有助于缓解电子设备和越来越复杂的电磁环境之间的电磁干扰(物联网[IoT]的当前发展)。

原创性/价值

这项工作的独创性依赖于这项工作中提出的新 NGD 设计,包括提取设计的微带新型结构的 S 矩阵参数。基于实验性 POC 的验证过程显示出非常有趣的 NGD O 电路水平(纳秒 GD 持续时间)。

更新日期:2021-07-12
down
wechat
bug