当前位置: X-MOL 学术Biogeochemistry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Temporal and microtopographical variations in greenhouse gas fluxes from riparian forest soils along headwater streams
Biogeochemistry ( IF 3.9 ) Pub Date : 2021-07-12 , DOI: 10.1007/s10533-021-00832-5
Teresa K. Silverthorn 1 , John S. Richardson 1
Affiliation  

Riparian zones of headwater streams have valuable ecosystem functions and are prevalent across many landscapes. Nevertheless, studies of greenhouse gas (GHG; CO2, CH4, N2O) fluxes from these unique ecosystems, with fluctuating water tables and high soil organic matter, remain limited. Our objectives were to (1) to quantify the effects of local riparian groundwater conditions on soil GHG flux rates, namely to determine if groundwater discharge (DIS) areas in the riparian zone would have higher soil moisture than adjacent non-discharge (ND) areas in the riparian zone, impacting GHG fluxes; and (2) to examine the relationship between GHG fluxes, soil moisture, soil temperature, and groundwater depth. We measured gas fluxes in situ alongside two relatively undisturbed headwater streams over 1 year, using closed static chambers and gas chromatography. We found that, although not significant, DIS areas had on average lower CH4 uptake and lower CO2 emissions than ND areas. We further found that soil temperature explained 30.0% and 26.2% of variation in CO2 and N2O fluxes, respectively, and soil moisture explained 9.8% of variation in CH4 fluxes. Our results provide information on the magnitude and drivers of GHG fluxes in riparian zones to help inform GHG budgets and forest management.



中文翻译:

源头河流沿岸森林土壤温室气体通量的时间和微地形变化

源头溪流的河岸带具有宝贵的生态系统功能,并在许多景观中普遍存在。尽管如此,温室气体研究(GHG;CO 2 , CH 4 , N 2O) 来自这些独特生态系统的通量,具有波动的地下水位和高土壤有机质,仍然有限。我们的目标是 (1) 量化当地河岸地下水条件对土壤温室气体通量率的影响,即确定河岸区的地下水排放 (DIS) 区域是否比相邻的非排放 (ND) 区域具有更高的土壤湿度在河岸带,影响温室气体通量;(2) 检查温室气体通量、土壤水分、土壤温度和地下水深度之间的关系。我们使用封闭的静态室和气相色谱仪,在 1 年内沿着两条相对未受干扰的源头流原位测量了气体通量。我们发现,虽然不显着,但 DIS 区域平均具有较低的 CH 4吸收和较低的 CO 2排放量高于 ND 地区。我们进一步发现,土壤温度分别解释了 CO 2和 N 2 O 通量变化的 30.0% 和 26.2% ,土壤湿度解释了 CH 4通量变化的 9.8% 。我们的结果提供了关于河岸地区 GHG 通量的大小和驱动因素的信息,以帮助为 GHG 预算和森林管理提供信息。

更新日期:2021-07-12
down
wechat
bug