当前位置: X-MOL 学术Comput. Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Particle-resolved simulations of ice slurry flows in a square duct by the thermal immersed boundary–lattice Boltzmann method
Computers & Fluids ( IF 2.5 ) Pub Date : 2021-07-12 , DOI: 10.1016/j.compfluid.2021.105064
Kosuke Suzuki 1 , Takuya Kuroiwa 2 , Tatsunori Asaoka 1 , Masato Yoshino 1, 3
Affiliation  

We perform particle-resolved simulations of ice slurry flows in a square duct by using the thermal immersed boundary–lattice Boltzmann method. We investigate the effects of Reynolds number, ice packing factor, and density ratio of the ice particle to the carrier fluid on the cooling performance of ice slurry flows. In addition, we compare two collision models, i.e., a repulsion model and an adhesion model, to investigate the effect of the solid–solid interaction. As a result, we find that the Nusselt number on the duct walls increases as the Reynolds number increases, since the flow speed relative to the thermal-diffusion speed increases with the Reynolds number. Also, the Nusselt number increases as the ice packing factor increases, since the particle distribution is more dispersed due to the increase in the number of ice particles and the collision frequency. When the density of the ice particle is slightly smaller than that of the carrier fluid, the particle distribution is biased towards the top wall due to the buoyancy force (heterogeneous flow), and the net Nusselt number slightly increases compared with the homogeneous flow. Finally, we find that the adhesion model gives a much smaller value of the Nusselt number on the duct walls than the repulsion model, since particle clusters are formed by adhesion and the particles are more concentrated around the center line of the duct.



中文翻译:

通过热浸边界-晶格 Boltzmann 方法对方管中冰浆流动的粒子分辨模拟

我们使用热浸入边界-晶格 Boltzmann 方法对方形管道中的冰浆流进行粒子解析模拟。我们研究了雷诺数、冰填充因子和冰颗粒与载液的密度比对冰浆流冷却性能的影响。此外,我们比较了两种碰撞模型,即排斥模型和粘附模型,以研究固-固相互作用的影响。结果,我们发现管道壁上的努塞尔数随着雷诺数的增加而增加,因为相对于热扩散速度的流动速度随着雷诺数的增加而增加。此外,努塞尔数随着冰填充因子的增加而增加,由于冰粒子数量和碰撞频率的增加,粒子分布更加分散。当冰粒的密度略小于载液的密度时,由于浮力(非均质流),颗粒分布偏向顶壁,净努塞尔数与均质流相比略有增加。最后,我们发现粘附模型给出的管道壁上的 Nusselt 数值比排斥模型小得多,因为颗粒簇是由粘附形成的,并且颗粒更集中在管道的中心线周围。由于浮力(非均质流),颗粒分布偏向顶壁,与均质流相比,净努塞尔数略有增加。最后,我们发现粘附模型给出的管道壁上的 Nusselt 数值比排斥模型小得多,因为颗粒簇是由粘附形成的,并且颗粒更集中在管道的中心线周围。由于浮力(非均质流),颗粒分布偏向顶壁,与均质流相比,净努塞尔数略有增加。最后,我们发现粘附模型给出的管道壁上的 Nusselt 数值比排斥模型小得多,因为颗粒簇是由粘附形成的,并且颗粒更集中在管道的中心线周围。

更新日期:2021-07-20
down
wechat
bug