当前位置: X-MOL 学术Indian J. Pure Appl. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cut vertices in comaximal graph of a commutative Artinian ring
Indian Journal of Pure and Applied Mathematics ( IF 0.4 ) Pub Date : 2021-07-12 , DOI: 10.1007/s13226-021-00119-3
Kyuoomars Esmaili 1, 2 , Karim Samei 1, 2
Affiliation  

Let R be a commutative Artinian ring with \(|{\text{Max}}(R)|=n \ge 2\). We show the comaximal graph of R has no cut-sets with more than one vertex. It has exactly a cut vertex if and only if \(R \simeq F\times \mathbb {Z}_2 \times \cdots \times \mathbb {Z}_2\), where F is a field, \(\vert F \vert > 2\) and \(n \ge 3\). It has n cut vertices if and only if R is a Boolean ring.



中文翻译:

在可交换 Artinian 环的共极大图中切割顶点

R是一个具有\(|{\text{Max}}(R)|=n \ge 2\)的可交换 Artinian 环。我们展示了R 的共极大图没有超过一个顶点的割集。当且仅当\(R \simeq F\times \mathbb {Z}_2 \times \cdots \times \mathbb {Z}_2\),其中F是一个场,\(\vert F \vert > 2\)\(n \ge 3\)。当且仅当R是布尔环,它有n 个切割顶点。

更新日期:2021-07-12
down
wechat
bug