当前位置: X-MOL 学术Int. J. Mass Spectrom. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Towards increasing the performance of FTICR-MS with signal detection at frequency multiples: Signal theory and numerical study
International Journal of Mass Spectrometry ( IF 1.6 ) Pub Date : 2021-07-10 , DOI: 10.1016/j.ijms.2021.116669
Qinghao Wu 1 , Mikhail V. Gorshkov 2 , Ljiljana Paša-Tolić 3
Affiliation  

In Fourier transform mass spectrometry, detection of the signal at the cyclotron frequency multiples using multi-electrode ion traps, called nX-ICR cells, yields high resolution mass spectra at proportionally increased acquisition speed, and facilitates applications in omics and complex mixture analysis. In this approach, the mass-analyzer performance depends crucially on the trajectory of the ion motion during detection. For example, the ion orbital radius is one of the main factors affecting detection sensitivity nonlinearly, whereas high orbital radius during detection could significantly reduce the time of the ion coherent motion deteriorating both resolution and sensitivity. To address this issue and ensure optimal performance, a detailed description of the signal induced in the detection circuit of the nX-ICR cell for different ion motion trajectories and cell parameters is needed. In this study, we consider a simplified analytical model for image current induced on the electrodes of a model nX-ICR cell. The proposed formalism establishes the relationships between the cell parameters (e.g., detection circuit input resistance, temperature, frequency bandwidth, number of electrodes), and ion trajectory, and parameters of the acquired signal. These relationships reveal the key factors affecting the sensitivity of nX-ICR cell and intensities of undesirable peaks at the frequency multiples in the mass spectra.



中文翻译:

以倍频信号检测提高 FTICR-MS 的性能:信号理论和数值研究

在傅里叶变换质谱法中,使用称为 nX-ICR 细胞的多电极离子阱检测回旋频率倍数的信号,以按比例增加的采集速度产生高分辨率质谱,并促进在组学和复杂混合物分析中的应用。在这种方法中,质量分析仪的性能在很大程度上取决于检测过程中离子运动的轨迹。例如,离子轨道半径是非线性影响检测灵敏度的主要因素之一,而在检测过程中高轨道半径可以显着减少离子相干运动降低分辨率和灵敏度的时间。为了解决这个问题并确保最佳性能,需要详细描述在 nX-ICR 单元的检测电路中针对不同离子运动轨迹和单元参数产生的信号。在这项研究中,我们考虑了一个简化的分析模型,用于在模型 nX-ICR 电池的电极上感应出的图像电流。所提出的形式建立了电池参数(例如,检测电路输入电阻、温度、频率带宽、电极数量)和离子轨迹以及所获取信号的参数之间的关系。这些关系揭示了影响 nX-ICR 细胞灵敏度的关键因素和质谱中频率倍数的不良峰强度。所提出的形式建立了电池参数(例如,检测电路输入电阻、温度、频率带宽、电极数量)和离子轨迹以及所获取信号的参数之间的关系。这些关系揭示了影响 nX-ICR 细胞灵敏度的关键因素和质谱中频率倍数的不良峰强度。所提出的形式建立了电池参数(例如,检测电路输入电阻、温度、频率带宽、电极数量)和离子轨迹以及所获取信号的参数之间的关系。这些关系揭示了影响 nX-ICR 细胞灵敏度的关键因素和质谱中频率倍数的不良峰强度。

更新日期:2021-07-18
down
wechat
bug