当前位置: X-MOL 学术Adv. Theory Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Preventing Electrolyte Decomposition on a Ca Metal Electrode Interface Using an Artificial Solid-Electrolyte Interphase
Advanced Theory and Simulations ( IF 2.9 ) Pub Date : 2021-07-09 , DOI: 10.1002/adts.202100018
Joshua Young 1 , Manuel Smeu 2
Affiliation  

Calcium ion batteries are gaining attention as alternatives to lithium-ion technology because they offer comparable properties at reduced cost and improved safety. However, progress has been limited because of the inability to efficiently and reversibly plate and strip Ca metal anodes in organic electrolytes. Moreover, the inorganic components of the solid-electrolyte interphase (SEI) that form via decomposition of the electrolyte often do not allow for the diffusion of Ca ions. In this work, an approach combining density functional theory and ab initio molecular dynamics (AIMD) simulations is utilized to show that the use of a preformed artificial SEI layer of amorphous Al 2 O 3 can potentially prevent electrolyte decomposition. First, Ca is shown to be able to intercalate into an amorphous Al 2 O 3 layer (up to Ca1.5Al2O3) and diffuse through on a reasonable time scale. Through calculation of the density of states, the system is found to remain insulating up to the equilibrium stoichiometry. Finally, AIMD simulations with a realistic organic electrolyte environment are used to show that this calcinated Al 2 O 3 layer completely prevents the decomposition of solvent molecules. This approach can provide a route to efficient rechargeable Ca ion batteries, paving the way for cheap large-scale energy storage.

中文翻译:

使用人工固体电解质界面防止电解质在 Ca 金属电极界面上分解

钙离子电池作为锂离子技术的替代品正受到关注,因为它们以更低的成本和更高的安全性提供可比的特性。然而,由于无法在有机电解质中有效且可逆地镀覆和剥离 Ca 金属阳极,因此进展受到限制。此外,通过电解质分解形成的固体电解质中间相 (SEI) 的无机成分通常不允许 Ca 离子扩散。在这项工作中,利用密度泛函理论和从头分子动力学 (AIMD) 模拟相结合的方法来表明使用预制的非晶态人工 SEI 层 2 3 可以潜在地防止电解质分解。首先,Ca 被证明能够嵌入无定形 2 3 层(高达 Ca 1.5 Al 2 O 3)并在合理的时间尺度上扩散。通过计算态密度,发现系统在达到平衡化学计量时仍保持绝缘。最后,使用具有真实有机电解质环境的 AIMD 模拟来表明这种煅烧 2 3 层完全防止溶剂分子的分解。这种方法可以为高效的可充电钙离子电池提供一条途径,为廉价的大规模储能铺平道路。
更新日期:2021-08-07
down
wechat
bug