当前位置: X-MOL 学术Brain Topogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mean-Field Modeling of Brain-Scale Dynamics for the Evaluation of EEG Source-Space Networks
Brain Topography ( IF 2.3 ) Pub Date : 2021-07-09 , DOI: 10.1007/s10548-021-00859-9
Sahar Allouch 1, 2 , Maxime Yochum 1 , Aya Kabbara 1 , Joan Duprez 1 , Mohamad Khalil 2, 3 , Fabrice Wendling 1 , Mahmoud Hassan 4 , Julien Modolo 1
Affiliation  

Understanding the dynamics of brain-scale functional networks at rest and during cognitive tasks is the subject of intense research efforts to unveil fundamental principles of brain functions. To estimate these large-scale brain networks, the emergent method called “electroencephalography (EEG) source connectivity” has generated increasing interest in the network neuroscience community, due to its ability to identify cortical brain networks with satisfactory spatio-temporal resolution, while reducing mixing and volume conduction effects. However, no consensus has been reached yet regarding a unified EEG source connectivity pipeline, and several methodological issues have to be carefully accounted to avoid pitfalls. Thus, a validation toolbox that provides flexible "ground truth" models is needed for an objective methods/parameters evaluation and, thereby an optimization of the EEG source connectivity pipeline. In this paper, we show how a recently developed large-scale model of brain-scale activity, named COALIA, can provide to some extent such ground truth by providing realistic simulations of source-level and scalp-level activity. Using a bottom-up approach, the model bridges cortical micro-circuitry and large-scale network dynamics. Here, we provide an example of the potential use of COALIA to analyze, in the context of epileptiform activity, the effect of three key factors involved in the “EEG source connectivity” pipeline: (i) EEG sensors density, (ii) algorithm used to solve the inverse problem, and (iii) functional connectivity measure. Results showed that a high electrode density (at least 64 channels) is required to accurately estimate cortical networks. Regarding the inverse solution/connectivity measure combination, the best performance at high electrode density was obtained using the weighted minimum norm estimate (wMNE) combined with the weighted phase lag index (wPLI). Although those results are specific to the considered aforementioned context (epileptiform activity), we believe that this model-based approach can be successfully applied to other experimental questions/contexts. We aim at presenting a proof-of-concept of the interest of COALIA in the network neuroscience field, and its potential use in optimizing the EEG source-space network estimation pipeline.



中文翻译:

用于评估 EEG 源空间网络的脑尺度动力学平均场建模

了解静止和认知任务期间大脑规模功能网络的动态是揭示大脑功能基本原理的密集研究工作的主题。为了估计这些大规模的大脑网络,称为“脑电图(EEG)源连接”的新兴方法引起了网络神经科学界越来越多的兴趣,因为它能够以令人满意的时空分辨率识别皮层大脑网络,同时减少混合和体积传导效应。然而,尚未就统一的 EEG 源连接管道达成共识,并且必须仔细考虑几个方法问题以避免陷阱。因此,一个提供灵活“基本事实”的验证工具箱 客观方法/参数评估需要模型,从而优化 EEG 源连接管道。在本文中,我们展示了最近开发的名为 COALIA 的大规模大脑活动模型如何通过提供源级和头皮级活动的真实模拟,在某种程度上提供这种基本事实。该模型采用自下而上的方法,将皮层微电路和大规模网络动力学联系起来。在这里,我们提供了一个潜在使用 COALIA 的示例,以在癫痫样活动的背景下分析“EEG 源连接”管道中涉及的三个关键因素的影响:(i) EEG 传感器密度,(ii) 使用的算法解决逆问题,以及 (iii) 功能连通性度量。结果表明,准确估计皮层网络需要高电极密度(至少 64 个通道)。关于逆解/连通性测量组合,使用加权最小范数估计 (wMNE) 结合加权相位滞后指数 (wPLI) 获得了高电极密度下的最佳性能。尽管这些结果特定于上述考虑的背景(癫痫样活动),但我们相信这种基于模型的方法可以成功地应用于其他实验问题/背景。我们旨在展示 COALIA 在网络神经科学领域的兴趣的概念验证,以及它在优化 EEG 源空间网络估计管道中的潜在用途。使用加权最小范数估计 (wMNE) 结合加权相位滞后指数 (wPLI) 获得了高电极密度下的最佳性能。尽管这些结果特定于上述考虑的背景(癫痫样活动),但我们相信这种基于模型的方法可以成功地应用于其他实验问题/背景。我们旨在展示 COALIA 在网络神经科学领域的兴趣的概念验证,以及它在优化 EEG 源空间网络估计管道中的潜在用途。使用加权最小范数估计 (wMNE) 结合加权相位滞后指数 (wPLI) 获得了高电极密度下的最佳性能。尽管这些结果特定于上述考虑的背景(癫痫样活动),但我们相信这种基于模型的方法可以成功地应用于其他实验问题/背景。我们旨在展示 COALIA 在网络神经科学领域的兴趣的概念验证,以及它在优化 EEG 源空间网络估计管道中的潜在用途。我们相信这种基于模型的方法可以成功地应用于其他实验问题/环境。我们旨在展示 COALIA 在网络神经科学领域的兴趣的概念验证,以及它在优化 EEG 源空间网络估计管道中的潜在用途。我们相信这种基于模型的方法可以成功地应用于其他实验问题/环境。我们旨在展示 COALIA 在网络神经科学领域的兴趣的概念验证,以及它在优化 EEG 源空间网络估计管道中的潜在用途。

更新日期:2021-07-12
down
wechat
bug