当前位置: X-MOL 学术Phys. Status Solidi A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accelerated Design of Battery Materials Interfaces by Embedded-Atom-Inspired Bond Valence Sum Forcefields
Physica Status Solidi (A) - Applications and Materials Science Pub Date : 2021-07-10 , DOI: 10.1002/pssa.202100318
Yuhan Pu 1 , Ruoyu Dai 1 , Stefan Adams 1
Affiliation  

To achieve higher energy density in safer energy storage systems, a transition to ceramic all-solid-state batteries is widely expected. Their performance and cycle-life is largely controlled by processes at buried interfaces. While experimental operando probing of interfacial processes is under development, first-principle computational methods are challenged by the complexity of the multiphase models and long simulation periods required to capture slow degradation processes. Thus, simpler empirical reactive forcefields have the potential to substantially accelerate the design and optimization of all-solid-state batteries, provided that parameters are available for a wide range of relevant atom types. The energy-scaled bond valence-based softBV forcefield has successfully enabled the design of new solid electrolytes or insertion-type electrode materials and analyses of ion transport processes therein. As a two-body forcefield, it enables fast simulations for complex structures over long periods, but inevitably shares the tendency of two-body forcefields to maximize coordination numbers if free volume facilitates a reorganization of the atoms, which makes them less suitable for studying interfacial processes. Herein, this vulnerability of two-body forcefields is overcome in a computationally efficient way by introducing an embedded-atom-method-inspired bond-valence-sum-based new class of transferable forcefields and its effective use for modeling of surfaces and interfaces is demonstrated.

中文翻译:

通过嵌入原子激发的键价和力场加速电池材料界面的设计

为了在更安全的储能系统中实现更高的能量密度,人们普遍期望向陶瓷全固态电池过渡。它们的性能和循环寿命在很大程度上受掩埋界面处的工艺控制。虽然界面过程的实验操作探测正在开发中,但第一性原理计算方法受到多相模型的复杂性和捕获缓慢降解过程所需的长模拟周期的挑战。因此,假设参数可用于广泛的相关原子类型,更简单的经验反应力场有可能显着加速全固态电池的设计和优化。基于能量标度键价的 softBV 力场已成功实现了新型固体电解质或插入型电极材料的设计以及其中离子传输过程的分析。作为一个双体力场,它可以在很长一段时间内对复杂结构进行快速模拟,但如果自由体积促进原子的重组,它不可避免地具有双体力场最大化配位数的趋势,这使得它们不太适合研究界面过程。在本文中,通过引入基于嵌入原子方法启发的键价和的新型可转移力场及其在表面和界面建模中的有效用途,以计算有效的方式克服了双体力场的这种脆弱性. 作为一个双体力场,它可以在很长一段时间内对复杂结构进行快速模拟,但如果自由体积促进原子的重组,它不可避免地具有双体力场最大化配位数的趋势,这使得它们不太适合研究界面过程。在此,通过引入基于嵌入原子方法启发的键价和的新型可转移力场及其在表面和界面建模中的有效用途,以计算有效的方式克服了双体力场的这种脆弱性. 作为一个双体力场,它可以在很长一段时间内对复杂结构进行快速模拟,但如果自由体积促进原子的重组,它不可避免地具有双体力场最大化配位数的趋势,这使得它们不太适合研究界面过程。在本文中,通过引入基于嵌入原子方法启发的键价和的新型可转移力场及其在表面和界面建模中的有效用途,以计算有效的方式克服了双体力场的这种脆弱性. 这使得它们不太适合研究界面过程。在本文中,通过引入基于嵌入原子方法启发的键价和的新型可转移力场及其在表面和界面建模中的有效用途,以计算有效的方式克服了双体力场的这种脆弱性. 这使得它们不太适合研究界面过程。在本文中,通过引入基于嵌入原子方法启发的键价和的新型可转移力场及其在表面和界面建模中的有效用途,以计算有效的方式克服了双体力场的这种脆弱性.
更新日期:2021-07-10
down
wechat
bug