当前位置: X-MOL 学术J. Photonics Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of an inorganic cesium carbonate-based electron transport material for a 17% power conversion efficiency perovskite solar cell device
Journal of Photonics for Energy ( IF 1.7 ) Pub Date : 2020-03-12 , DOI: 10.1117/1.jpe.10.015502
Mohammad I. Hossain 1 , Brahim Aïssa 1 , Iwan Zimmermann 2 , Mohammad Khaja Nazeeruddin 2 , Abdelhak Belaidi 1
Affiliation  

Abstract. A low-temperature solution process technique is employed to develop an inorganic cesium carbonate (Cs2CO3) as an electron transport material for inorganic–organic hybrid double cation (FAPbI3)0.85(MAPbBr3)0.15 perovskite solar cells, as an alternative to the conventional thick and meso-TiO2. A device structure of compact-TiO2/Cs2CO3 (0.2 wt. %)/perovskite/spiro-OMETAD leads to enhanced performance of the photovoltaic device, achieving a short-circuit current density (Jsc) of 22.26 mA/cm2, an open-circuit voltage (Voc) of 1054 mV, a fill factor (FF) of 71.6%, and a power conversion efficiency (PCE) of about 17% under one sun illumination, whereas the controlled device structure shows an efficiency of 16.58% without such surface modification layer. Additionally, a device structure of Cs2CO3 (6 wt. %)/perovskite/spiro-OMETAD without any TiO2 ETM has shown a Jsc of 15.40 mA/cm2, Voc of 1023 mV, FF of 51.7%, and a PCE of 8.14%. On the other hand, external quantum efficiency (EQE) data yields around 85% of incident photon to electron conversion for c-TiO2/Cs2CO3 (0.2 wt. %)/perovskite/spiro-OMETAD structure and integrated Jsc extracted from EQE data confirms that Jsc obtained from the current–voltage test is within a close agreement. The obtained results indicate that there is a possibility to further increase the performance of perovskite-based cells and reduce their processing cost by replacing the thick mesoporous TiO2 by Cs2CO3.

中文翻译:

为17%的功率转换效率的无机铯碳酸盐基的电子传输材料的发展钙钛矿太阳能电池装置

摘要。当采用低温溶液处理技术来开发的无机碳酸铯(碳酸铯)作为无机 - 有机杂化双阳离子(FAPbI3)0.85(MAPbBr3)0.15钙钛矿太阳能电池的电子传输材料,以替代常规的厚和内消旋二氧化钛。紧凑型 TiO2/Cs2CO3(0.2 重量%)/钙钛矿/螺-OMETAD 的器件结构提高了光伏器件的性能,实现了 22.26 mA/cm2 的短路电流密度(Jsc),开路电压1054毫伏(VOC),填充因子的71.6%(FF),和约17%的下一个太阳照明的功率转换效率(PCE),而控制装置的结构示出了不具有这种表面改性的16.58%的效率层。另外,碳酸铯的器件结构(6重量 %)/钙钛矿/螺-OMETAD 不含任何 TiO2 ETM 的 Jsc 为 15.40 mA/cm2,Voc 为 1023 mV,FF 为 51.7%,PCE 为 8.14%。在另一方面,围绕入射光子的85%的外量子效率(EQE)的数据率来对c-的TiO 2 /碳酸铯电子转换(0.2重量%)/钙钛矿/螺环-OMeTAD结构和集成的Jsc从EQE数据确认提取的从电流 - 电压试验得到JSC是一个非常一致之内。将所得到的结果表明,有可能以进一步增加钙钛矿基电池的性能和由碳酸铯代替厚介孔TiO2降低其加工成本。对于 c-TiO2/Cs2CO3(0.2 重量%)/钙钛矿/螺-OMETAD 结构,外部量子效率 (EQE) 数据产生了大约 85% 的入射光子到电子转换,并且从 EQE 数据中提取的集成 Jsc 证实了从电流获得的 Jsc - 电压测试是非常一致之内。将所得到的结果表明,有可能以进一步增加钙钛矿基电池的性能和由碳酸铯代替厚介孔TiO2降低其加工成本。对于 c-TiO2/Cs2CO3(0.2 重量%)/钙钛矿/螺-OMETAD 结构,外部量子效率 (EQE) 数据产生约 85% 的入射光子到电子转换率,并且从 EQE 数据提取的集成 Jsc 证实了从电流获得的 Jsc - 电压测试是非常一致之内。所得结果表明,通过用 Cs2CO3 代替厚介孔 TiO2,有可能进一步提高钙钛矿基电池的性能并降低其加工成本。
更新日期:2020-03-12
down
wechat
bug