当前位置: X-MOL 学术IEEE Trans. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Study on Reconfigurable Nanomagnetic Array and Effect of Gilbert Damping on Reconfigurability
IEEE Transactions on Nanotechnology ( IF 2.4 ) Pub Date : 2021-06-08 , DOI: 10.1109/tnano.2021.3087590
Arifa Hoque , Srinath Rajaram , Sanjukta Bhanja

A 2-D grid of circular nanomagnets (NMs) has been effectively used to solve binary quadratic optimization problems via magnetic interaction in the X-Y plane. Reconfiguring this architecture is challenging due to the geometry and spacing constraints imposed by the computational algorithm, but can be achieved by destabilizing the uniform and unidirectional magnetic influence from the non-computing cell. In this paper, we studied how the straightforward spin transfer torque (STT) can induce a rotational coupling field between the non-computing and computing cells to impair static interaction. This mechanism is also better than spin orbital torque (SOT)-based reconfiguration in terms of power, speed and system integration. Our study shows that STT-based solution requires 14× less current desnsity and is 25% faster than the SOT-based counterpart. We extended the study to achieve low-power reconfiguration by altering the Gilbert damping. A lower damping can further reduce 60% of the required current than the high damping case.

中文翻译:

可重构纳米磁阵列及吉尔伯特阻尼对可重构性影响的研究

圆形纳米磁体 (NM) 的二维网格已被有效地用于通过 XY 平面中的磁相互作用解决二元二次优化问题。由于计算算法施加的几何形状和间距限制,重新配置这种架构具有挑战性,但可以通过破坏来自非计算单元的均匀和单向磁影响来实现。在本文中,我们研究了直接自旋转移矩 (STT) 如何在非计算和计算单元之间引起旋转耦合场以削弱静态相互作用。这种机制在功率、速度和系统集成方面也优于基于自旋轨道扭矩 (SOT) 的重构。我们的研究表明,基于 STT 的解决方案需要的电流密度降低 14 倍,并且比基于 SOT 的解决方案快 25%。我们扩展了研究,通过改变吉尔伯特阻尼来实现低功耗重构。与高阻尼情况相比,较低的阻尼可以进一步减少 60% 的所需电流。
更新日期:2021-07-09
down
wechat
bug