当前位置: X-MOL 学术Chin. J. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of Self-Reporting Biodegradable CO2-Based Polycarbonates for the Visualization of Thermoresponsive Behavior with Aggregation-Induced Emission Technology†
Chinese Journal of Chemistry ( IF 5.5 ) Pub Date : 2021-07-08 , DOI: 10.1002/cjoc.202100372
Molin Wang 1, 2 , Enhao Wang 1, 2 , Han Cao 1, 2 , Shunjie Liu 1, 2 , Xianhong Wang 1, 2 , Fosong Wang 1, 2
Affiliation  

Thermoresponsive polymers with simultaneous biodegradability and signal “self-reporting” outputs that meet for advanced applications are hard to obtain. To address this issue, we developed fluorescence signal “self-reporting” biodegradable thermoresponsive polycarbonates through the immortal copolymerization of CO2 and oligoethylene glycol monomethyl ether-functionalized epoxides in the presence of hydroxyl-modified tetraphenylethylene (TPE-OH). TPE-OH was used as chain transfer agent to afford well-defined polycarbonates with controlled molecular weight (6000—17000 g·mol–1) and aggregation-induced emission characteristics. Through temperature-dependent fluorescence intensity study, low critical solution transition of TPE-labeled polycarbonates were determined and the fine details of thermal-induced phase transition process were monitored. Further research indicated that temperature-controlled aggregation and dissociation of TPE moieties are the main reason for fluorescence intensity variations. We anticipate that this work could offer a method to visualize the thermal transition process of thermoresponsive polycarbonates and broaden their application fields as smart materials.image

中文翻译:

构建自我报告的可生物降解 CO2 基聚碳酸酯,通过聚集诱导发射技术实现热响应行为的可视化†

很难获得同时具有生物降解性和信号“自我报告”输出以满足高级应用的热响应聚合物。为了解决这个问题,我们在羟基改性的四苯基乙烯 (TPE-OH) 存在下,通过 CO 2和低聚乙二醇单甲醚官能化环氧化物的永生共聚,开发了荧光信号“自我报告”的可生物降解热敏聚碳酸酯。TPE-OH 用作链转移剂以提供具有受控分子量 (6000-17000 g·mol –1) 和聚集诱导的发射特性。通过温度依赖性荧光强度研究,确定了 TPE 标记的聚碳酸酯的低临界溶液转变,并监测了热诱导相变过程的细节。进一步的研究表明,TPE 部分的温度控制聚集和解离是荧光强度变化的主要原因。我们预计这项工作可以提供一种方法来可视化热响应聚碳酸酯的热转变过程,并拓宽其作为智能材料的应用领域。图片
更新日期:2021-07-08
down
wechat
bug