当前位置: X-MOL 学术Phys. Rev. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum Chemistry Treatment of Silicon-Hydrogen Bond Rupture by Nonequilibrium Carriers in Semiconductor Devices
Physical Review Applied ( IF 4.6 ) Pub Date : 2021-07-09 , DOI: 10.1103/physrevapplied.16.014026
Markus Jech 1 , Al-Moatasem El-Sayed 1, 2 , Stanislav Tyaginov 1, 3, 4 , Dominic Waldhör 1 , Foudhil Bouakline 5 , Peter Saalfrank 5 , Dominic Jabs 6 , Christoph Jungemann 6 , Michael Waltl 1 , Tibor Grasser 1
Affiliation  

The interaction of charge carriers with hydrogen-related defects plays a key role in modern semiconductor applications. Particularly in the field of micro- and nanoelectronics, where silicon together with amorphous gate oxides is still the technology of choice, Si—H bonds participate in a rich variety of phenomena. For example, the passivating nature of H and its influence on surface reconstruction are fundamentally useful features for modern technologies and emerging research fields alike. However, the dissociation of Si—H bonds results in electrically active defects and is associated with a number of device reliability issues. In this work we develop a general quantum kinetic formulation to describe the dynamics of bond excitation and breaking. The wealth of experimental and theoretical studies on Si—H bond breaking induced by energetic carriers enables us to extract the most useful excitation pathways. Based on the open-system density-matrix theory we develop a model that accounts for all relevant system-bath interactions: vibrational relaxation and dipole scattering as well as resonance-induced excitation. In contrast to existing theoretical studies, our model is coupled to a Boltzmann transport equation solver, which is required for the correct consideration of nonequilibrium carrier energy distribution functions occuring in an electronic device. Finally, we apply our framework to model Si—H bond breakage at the Si/SiO2 interface and validate our approach against different experimental data sets. The results provide a fundamental understanding of Si—H dissociation mechanisms and allow for an accurate microscopic description of hot-carrier-induced damage at the device level. Due to the model formulation being free of empirical parameters, the approach can be easily applied to future technologies and materials systems.

中文翻译:

半导体器件中非平衡载流子对硅氢键断裂的量子化学处理

电荷载流子与氢相关缺陷的相互作用在现代半导体应用中起着关键作用。特别是在微电子和纳米电子领域,硅和非晶栅极氧化物仍然是首选技术,——H 键参与了丰富多样的现象。例如,H 的钝化性质及其对表面重建的影响是现代技术和新兴研究领域等基本有用的特征。然而,分离-H 键会导致电活性缺陷,并与许多器件可靠性问题相关。在这项工作中,我们开发了一个通用的量子动力学公式来描述键激发和断裂的动力学。丰富的实验和理论研究- 由高能载流子引起的 H 键断裂使我们能够提取最有用的激发途径。基于开放系统密度矩阵理论,我们开发了一个模型来解释所有相关的系统-浴相互作用:振动弛豫和偶极子散射以及共振诱导的激发。与现有的理论研究相比,我们的模型与玻尔兹曼传输方程求解器相结合,这是正确考虑电子设备中出现的非平衡载流子能量分布函数所必需的。最后,我们将我们的框架应用于模型——H 键断裂 硅/硅2接口并针对不同的实验数据集验证我们的方法。结果提供了基本的理解-H 解离机制,并允许在器件级别对热载流子引起的损坏进行准确的微观描述。由于模型公式没有经验参数,因此该方法可以轻松应用于未来的技术和材料系统。
更新日期:2021-07-09
down
wechat
bug