当前位置: X-MOL 学术Phys. Rev. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum Computing with Superconducting Circuits in the Picosecond Regime
Physical Review Applied ( IF 3.8 ) Pub Date : 2021-07-09 , DOI: 10.1103/physrevapplied.16.014024
Daoquan Zhu 1, 2 , Tuomas Jaako 3 , Qiongyi He 1, 2 , Peter Rabl 3
Affiliation  

We discuss the realization of a universal set of ultrafast single- and two-qubit operations with superconducting quantum circuits and investigate the most relevant physical and technical limitations that arise when pushing for faster and faster gates. With the help of numerical optimization techniques, we establish a fundamental bound on the minimal gate time, which is determined independently of the qubit design solely by its nonlinearity. In addition, important practical restrictions arise from the finite qubit transition frequency and the limited bandwidth of the control pulses. We show that, for highly anharmonic flux qubits and commercially available control electronics, elementary single- and two-qubit operations can be implemented in about 100 ps with residual gate errors below 104. Under the same conditions, we simulate the complete execution of a compressed version of Shor’s algorithm for factoring the number 15 in about 1 ns. These results demonstrate that, compared to state-of-the-art implementations with transmon qubits, a hundredfold increase in the speed of gate operations with superconducting circuits is still feasible.

中文翻译:

皮秒级超导电路的量子计算

我们讨论了使用超导量子电路实现一组通用的超快单和双量子位操作,并研究了在推动越来越快的门时出现的最相关的物理和技术限制。在数值优化技术的帮助下,我们建立了最小门时间的基本界限,该界限独立于量子位设计,仅由其非线性决定。此外,重要的实际限制来自有限的量子位跃迁频率和控制脉冲的有限带宽。我们表明,对于高度非谐波通量量子位和商用控制电子设备,基本的单量子位和双量子位操作可以在大约 100 ps 内实现,剩余门误差低于10-4. 在相同条件下,我们模拟了 Shor 算法的压缩版本的完整执行,用于在大约 1 ns 内分解数字 15。这些结果表明,与使用 transmon 量子位的最先进实现相比,使用超导电路将门操作的速度提高一百倍仍然是可行的。
更新日期:2021-07-09
down
wechat
bug