当前位置: X-MOL 学术Acta. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flexoelectric effect in boron nitride–graphene heterostructures
Acta Mechanica ( IF 2.3 ) Pub Date : 2021-07-09 , DOI: 10.1007/s00707-021-03022-4
S. I. Kundalwal 1 , V. K. Choyal 1 , Vijay Choyal 1
Affiliation  

Hexagonal boron nitride and graphene layers offer an attractive way to build 2D heterostructures as their lattices are well-matched as well as they are isostructural and isoelectronic. In this work, the flexoelectric coefficients of monolayer boron nitride-graphene heterostructures (BGHs) are determined using molecular dynamics simulations with a Tersoff potential force field. This is achieved by imposing the bending deformation to the pristine BN sheet (BNS) and BGHs. Three shapes of graphene domains are considered: triangular, trapezoidal and circular. Overall polarization of BGHs was enhanced when the graphene domain was surrounded by more N atoms than B atoms. This enhancement is attributed to higher dipole moments due to the C–N interface compared to the C–B interface. The flexoelectric response for BGHs with 5.6% of triangular and trapezoidal graphene domains was enhanced by 15.2% and 7.83%, respectively, and reduced by 25% for the circular graphene domain. We also studied the bending stiffness of pristine BNS and BGHs using the continuum-mechanics approach. Our results also reveal that the bending stiffness of BGHs increases compared to the pristine BNS. Moreover, the enhancement in the flexoelectric coefficient and bending stiffness was more significant when the graphene domain breaks the symmetry of BGHs. Our fundamental study highlights the possibility of using BGHs in nanoelectromechanical systems (NEMS) such as actuators, sensors and resonators.



中文翻译:

氮化硼-石墨烯异质结构中的挠曲电效应

六方氮化硼和石墨烯层提供了一种有吸引力的方式来构建二维异质结构,因为它们的晶格匹配良好,并且它们是等结构和等电子的。在这项工作中,单层氮化硼-石墨烯异质结构 (BGH) 的挠曲电系数是使用具有 Tersoff 势力场的分子动力学模拟确定的。这是通过对原始 BN 板 (BNS) 和 BGH 施加弯曲变形来实现的。考虑了石墨烯域的三种形状:三角形、梯形和圆形。当石墨烯域被比 B 原子更多的 N 原子包围时,BGH 的整体极化增强。这种增强归因于与 C-B 界面相比,C-N 界面具有更高的偶极矩。具有 5 的 BGH 的挠曲电响应。三角形和梯形石墨烯域的 6% 分别增强了 15.2% 和 7.83%,圆形石墨烯域减少了 25%。我们还使用连续介质力学方法研究了原始 BNS 和 BGH 的弯曲刚度。我们的结果还表明,与原始 BNS 相比,BGH 的弯曲刚度增加。此外,当石墨烯域破坏 BGH 的对称性时,挠曲电系数和弯曲刚度的增强更为显着。我们的基础研究强调了在纳米机电系统 (NEMS) 中使用 BGH 的可能性,例如致动器、传感器和谐振器。我们还使用连续介质力学方法研究了原始 BNS 和 BGH 的弯曲刚度。我们的结果还表明,与原始 BNS 相比,BGH 的弯曲刚度增加。此外,当石墨烯域破坏 BGH 的对称性时,挠曲电系数和弯曲刚度的增强更为显着。我们的基础研究强调了在纳米机电系统 (NEMS) 中使用 BGH 的可能性,例如致动器、传感器和谐振器。我们还使用连续介质力学方法研究了原始 BNS 和 BGH 的弯曲刚度。我们的结果还表明,与原始 BNS 相比,BGH 的弯曲刚度增加。此外,当石墨烯域破坏 BGH 的对称性时,挠曲电系数和弯曲刚度的增强更为显着。我们的基础研究强调了在纳米机电系统 (NEMS) 中使用 BGH 的可能性,例如致动器、传感器和谐振器。

更新日期:2021-07-09
down
wechat
bug