当前位置: X-MOL 学术Aeolian Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental investigation to mitigate aeolian erosion via biocementation employed with a novel ureolytic soil isolate
Aeolian Research ( IF 3.3 ) Pub Date : 2021-07-09 , DOI: 10.1016/j.aeolia.2021.100727
Anant Aishwarya Dubey 1, 2 , Rituraj Devrani 3 , K. Ravi 1 , Navdeep Kaur Dhami 2 , Abhijit Mukherjee 2 , Lingaraj Sahoo 4
Affiliation  

Aeolian ecosystems suffer severe land degradation due to wind erosion. This study presents the erosion mitigation via bio-cementation technique for the soil collected from Jaisalmer region of the Thar Desert of India. Most of the previous studies considered conventional microbe Sporosarcina pasteurii for aeolian erosion mitigation. Alternatively, as the soils containing vegetation are rich in microbial diversity, this study presents isolation and characterisation of a novel urease-positive microbial strain from a soil slope, which is later utilised for the aeolian-erosion mitigation. The desert sand was subjected to biocementation treatment using the isolated microbe and various molar concentrations (M) of cementation solution, ranging from 0.25 M to 1 M. The engineering properties of the biocemented sand such as coefficient of permeability (k), unconfined compressive strength (UCS), and erodibility was investigated. The soil erosion test was conducted in a lab-scale wind tunnel to investigate parameters such as soil mass loss and threshold detachment velocity. The investigation revealed a decrease of one order in the magnitude of the permeability coefficient with 1 M biocementation treatment. A high UCS value of around 1 MPa was observed with a low calcium carbonate content of 1.3% precipitated with 0.5 M cementation solution treatment. The erosion resistance is observed to be maximum with 1 M cementation solution treatment withstanding the maximum wind velocity above 55 km/h. With lab-scale investigation, this study confirms drastic improvement in soil erodibility resistance with biocementation using the isolated microbe and encourages field trial for protecting the desert ecosystem from severe erosion.



中文翻译:

通过采用新型尿素分解土壤分离物的生物胶结减轻风蚀的实验研究

由于风蚀,风成生态系统遭受严重的土地退化。本研究介绍了通过生物胶结技术对从印度塔尔沙漠 Jaisalmer 地区收集的土壤进行的侵蚀缓解。以前的大多数研究都考虑了常规微生物Sporosarcina pasteurii用于减缓风蚀。或者,由于含有植被的土壤具有丰富的微生物多样性,本研究从土壤斜坡中分离和表征了一种新型脲酶阳性微生物菌株,该菌株后来用于缓解风沙侵蚀。使用分离的微生物和各种摩尔浓度 (M) 的胶结溶液对沙漠沙进行生物胶结处理,范围从 0.25 M 到 1 M。 生物胶结沙的工程特性,如渗透系数 (k)、无侧限抗压强度(UCS),并研究了可蚀性。土壤侵蚀测试在实验室规模的风洞中进行,以研究土壤质量损失和阈值脱离速度等参数。调查显示,采用 1 M 生物水泥处理后,渗透系数的大小降低了一个数量级。观察到约 1 MPa 的高 UCS 值和 1.3% 的低碳酸钙含量,用 0.5 M 的胶结溶液处理沉淀。观察到 1 M 胶结溶液处理的耐侵蚀性最大,可承受超过 55 公里/小时的最大风速。通过实验室规模的调查,这项研究证实了使用分离的微生物进行生物胶结可显着提高土壤的耐蚀性,并鼓励进行田间试验,以保护沙漠生态系统免受严重侵蚀。观察到 1 M 胶结溶液处理的耐侵蚀性最大,可承受超过 55 公里/小时的最大风速。通过实验室规模的调查,这项研究证实了使用分离的微生物进行生物胶结可显着提高土壤的耐蚀性,并鼓励进行田间试验,以保护沙漠生态系统免受严重侵蚀。观察到 1 M 胶结溶液处理的耐侵蚀性最大,可承受超过 55 公里/小时的最大风速。通过实验室规模的调查,这项研究证实了使用分离的微生物进行生物胶结可显着提高土壤的耐蚀性,并鼓励进行田间试验,以保护沙漠生态系统免受严重侵蚀。

更新日期:2021-07-09
down
wechat
bug