当前位置: X-MOL 学术Mar. Geophys. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A numerical investigation into gas production under worst case scenario of limited heat transfer
Marine Geophysical Research ( IF 1.6 ) Pub Date : 2021-07-06 , DOI: 10.1007/s11001-021-09445-x
Shadman Hasan Khan 1, 2 , A. Kumari 1, 2 , C. B. Majumder 1, 2 , G. Dixit 3 , A. Arora 4
Affiliation  

Depressurization technique is considered as one of the most promising techniques in dissociating gas hydrates. However, since dissociation of hydrates is an endothermic process. Dissociation alone through depressurization is not a feasible technique due to limited heat transfer. The reduced heat transfer results in rapid cooling, thereby causing reduced permeability due to ice formation and re-formation of hydrates. The objective of the current study is to investigate the viability of depressurization under worst case scenario of suppressed heat transfer. The worst case scenario is simulated by employing Newman boundary of no heat flux from the surroundings. The novelty of the present work lies in investigating the gas production behavior using depressurization in a worst case scenario. For this purpose, a 2D model is applied for a 150 m × 150 m system. A production well is placed at the center of the domain. The depressurization is performed by the withdrawal of fluids from the production well. In order to determine the suitable depressurization rate, the withdrawal of fluids is carried out within a range of 0.01–0.6 kg/s. The overall cumulative production at the well (mass of CH4) is determined. In this study, we demonstrate that three major causes, namely ice formation, secondary hydrates and reservoir achieving steady state are responsible for stopping of gas production. Insights into the dissociation behavior of the cases analysed are obtained from the contours of gas, water, hydrate, pressure, equilibrium pressure, temperature, relative gas permeability, and relative water permeability.



中文翻译:

有限传热最坏情况下产气量的数值研究

减压技术被认为是解离天然气水合物的最有前途的技术之一。然而,由于水合物的解离是一个吸热过程。由于传热有限,单独通过减压解离是不可行的技术。减少的传热导致快速冷却,从而由于冰的形成和水合物的重新形成而导致渗透性降低。当前研究的目的是研究在抑制传热的最坏情况下减压的可行性。最坏的情况是通过采用没有来自周围环境的热通量的纽曼边界来模拟的。目前工作的新颖之处在于研究在最坏情况下使用减压的气体生产行为。以此目的,2D 模型适用于 150 m × 150 m 系统。生产井位于区域的中心。减压是通过从生产井中抽取流体来进行的。为了确定合适的降压速率,在0.01-0.6 kg/s的范围内进行流体的抽取。井的总累计产量(CH 的质量4 ) 确定。在这项研究中,我们证明了三个主要原因,即冰的形成、次生水合物和储层达到稳定状态是导致天然气生产停止的原因。从气体、水、水合物、压力、平衡压力、温度、相对气体渗透率和相对水渗透率的等高线中获得对所分析案例的解离行为的洞察。

更新日期:2021-07-07
down
wechat
bug