当前位置: X-MOL 学术Adv. Fiber Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrospinning Engineering Enables High-Performance Sodium-Ion Batteries
Advanced Fiber Materials ( IF 16.1 ) Pub Date : 2021-07-07 , DOI: 10.1007/s42765-021-00088-6
Chuanping Li 1 , Ruiling Li 1 , Xuan Li 1 , Manxi Wang 1 , Jiabo He 1 , Qingrong Qian 1 , Qinghua Chen 1 , Xiaoyan Li 1 , Yuming Chen 1 , Min Qiu 2 , Liren Xiao 2 , Ganggang Lin 3 , Junxiong Wu 4 , Yiu-Wing Mai 5
Affiliation  

As a promising energy storage device, sodium-ion batteries (SIBs) have received continuous attention due to their low-cost and environmental friendliness. However, the sluggish kinetics of Na ion usually makes SIBs hard to realize desirable electrochemical performance when compared to lithium-ion batteries (LIBs). The key to addressing this issue is to build up nanostructured materials which enable fast Na-ion insertion/extraction. One-dimensional (1D) nanocarbons have been considered as both the anode and the matrix to support active materials for SIB electrodes owing to their high electronic conductivity and excellent mechanical property. Because of their large surface areas and short ion/electron diffusion path, the synthesized electrodes can show good rate performance and cyclic stability during the charge/discharge processes. Electrospinning is a simple synthetic technology, featuring inexpensiveness, easy operation and scalable production, and has been largely used to fabricate 1D nanostructured composites. In this review, we first give a simple description of the electrospinning principle and its capability to construct desired nanostructures with different compositions. Then, we discuss recent developments of carbon-based hybrids with desired structural and compositional characteristics as the electrodes by electrospinning engineering for SIBs. Finally, we identify future research directions to realize more breakthroughs on electrospun electrodes for SIBs.



中文翻译:

静电纺丝工程使高性能钠离子电池成为可能

钠离子电池(SIBs)作为一种很有前途的储能装置,因其低成本和环境友好而受到持续关注。然而,与锂离子电池 (LIB) 相比,钠离子缓慢的动力学通常使 SIBs 难以实现理想的电化学性能。解决这个问题的关键是构建纳米结构材料,以实现快速的钠离子插入/提取。一维(1D)纳米碳由于其高电导率和优异的机械性能而被认为既是阳极又是支撑SIB电极活性材料的基质。由于它们的大表面积和短的离子/电子扩散路径,合成的电极在充电/放电过程中表现出良好的倍率性能和循环稳定性。静电纺丝是一种简单的合成技术,具有价格低廉、操作方便和可扩展生产的特点,已被广泛用于制造一维纳米结构复合材料。在这篇综述中,我们首先简单描述了静电纺丝原理及其构建具有不同成分的所需纳米结构的能力。然后,我们通过静电纺丝工程为 SIB 讨论了具有所需结构和组成特征的碳基杂化物作为电极的最新发展。最后,我们确定了未来的研究方向,以在 SIB 的电纺电极上实现更多突破。我们首先简单描述静电纺丝原理及其构建具有不同成分的所需纳米结构的能力。然后,我们通过静电纺丝工程为 SIB 讨论了具有所需结构和组成特征的碳基杂化物作为电极的最新发展。最后,我们确定了未来的研究方向,以在 SIB 的电纺电极上实现更多突破。我们首先简单描述静电纺丝原理及其构建具有不同成分的所需纳米结构的能力。然后,我们通过静电纺丝工程为 SIB 讨论了具有所需结构和组成特征的碳基杂化物作为电极的最新发展。最后,我们确定了未来的研究方向,以在 SIB 的电纺电极上实现更多突破。

更新日期:2021-07-07
down
wechat
bug