当前位置: X-MOL 学术Phys. Rev. Materials › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Full energy range primary radiation damage model
Physical Review Materials ( IF 3.1 ) Pub Date : 2021-07-06 , DOI: 10.1103/physrevmaterials.5.073602
Qigui Yang , Pär Olsson

A full energy range primary radiation damage model is presented here. It is based on the athermal recombination corrected displacements per atom (arc-dpa) model but includes a proper treatment of the near threshold conditions for metallic materials. Both ab initio (AIMD) and classical molecular dynamics (MD) simulations are used here for various metals with body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal close-packed (hcp) structures to validate the model. For bcc and hcp metals, the simulation results fit very well with the model. For fcc metals, although there are slight deviations between the model and direct simulation results, it is still a clear improvement on the arc-dpa model. The deviations are due to qualitative differences in the threshold energy surfaces of fcc metals with respect to bcc and hcp metals according to our classical MD simulations. We introduce the minimum threshold displacement energy (TDE) as a term in our damage model. We calculated minimum TDEs for various metal materials using AIMD. In general, the calculated minimum TDEs are in very good agreement with experimental results. Moreover, we noticed a discrepancy in the literature for fcc Ni and estimated the average TDE of Ni using both classical MD and AIMD. It was found that the average TDE of Ni should be ∼70 eV based on simulation and experimental data, not the commonly used literature value of 40 eV. The most significant implications of introducing this full energy range damage model will be for estimating the effect of weak particle-matter interactions, such as for γ- and electron-radiation-induced damage.

中文翻译:

全能量范围初级辐射损伤模型

此处介绍了全能量范围的初级辐射损伤模型。它基于每个原子的无热复合校正位移 (arc-dpa) 模型,但包括对金属材料的近阈值条件的适当处理。双方从头开始(AIMD) 和经典分子动力学 (MD) 模拟在这里用于具有体心立方 (bcc)、面心立方 (fcc) 和六方密堆积 (hcp) 结构的各种金属来验证模型。对于 bcc 和 hcp 金属,模拟结果与模​​型非常吻合。对于fcc金属,虽然模型和直接模拟结果有轻微的偏差,但仍然是arc-dpa模型的明显改进。根据我们的经典 MD 模拟,这些偏差是由于 fcc 金属相对于 bcc 和 hcp 金属的阈值能量表面的质量差异。我们在损伤模型中引入了最小阈值位移能 (TDE) 作为术语。我们使用 AIMD 计算了各种金属材料的最小 TDE。一般来说,计算出的最小 TDE 与实验结果非常吻合。此外,我们注意到 fcc Ni 的文献存在差异,并使用经典 MD 和 AIMD 估计了 Ni 的平均 TDE。根据模拟和实验数据发现,Ni 的平均 TDE 应为~70 eV,而不是常用的文献值 40 eV。引入这种全能量范围损伤模型的最重要意义将是估计弱粒子-物质相互作用的影响,例如γ - 和电子辐射引起的损伤。
更新日期:2021-07-06
down
wechat
bug