当前位置: X-MOL 学术Energy Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nitrogen-Doped Porous Carbon Nanosheets with Ultrahigh Capacity and Quasicapacitive Energy Storage Performance for Lithium and Sodium Storage Applications
Energy Technology ( IF 3.6 ) Pub Date : 2021-07-06 , DOI: 10.1002/ente.202100309
Ranran Song 1, 2 , Yue Dong 2 , Di Zhang 2, 3 , Jun Sheng 1 , Shubin Yang 3 , Huaihe Song 2
Affiliation  

One of the great challenges in the development of rechargeable batteries is developing electrode materials with high capacities and good rate performance. Herein, thin carbon nanosheets with hierarchical porous structure and high nitrogen content (10.6 at%) are elaborately designed and fabricated from phenolic resin through a two-step method including N2 carbonization and NH3 annealing. The as-obtained nitrogen-doped porous carbon nanosheets (NPCNs) exhibit abundant electroactive sites from large surface area and nitrogen species for lithium/sodium storage, and short diffusion channels from unique porous 2D structure for rapid charge transfer. As a result, the optimal NPCNs show outstanding lithium storage capacities of 2065 and 300 mAh g−1 at current densities of 0.05 and 200 A g−1, respectively, as well as good cycle stability. Moreover, the NPCNs also carry out an excellent sodium storage performance of 222 and 134 mAh g−1 at 1 and 10 A g−1, respectively. Further electrochemical analysis demonstrates that the superior rate capability of NPCNs might attribute to the surface-dominated energy storage process. A new route for the preparation and development of high-performance electrode materials for new-generation energy storage devices is provided.

中文翻译:

具有超高容量和准电容储能性能的氮掺杂多孔碳纳米片,用于锂和钠存储应用

可充电电池发展的一大挑战是开发具有高容量和良好倍率性能的电极材料。在此,采用酚醛树脂通过N 2碳化和NH 3退火两步法精心设计并制造出具有分级多孔结构和高氮含量(10.6 at%)的薄碳纳米片。所获得的氮掺杂多孔碳纳米片 (NPCN) 具有来自大表面积和用于锂/钠存储的氮物种的丰富电活性位点,以及用于快速电荷转移的独特多孔二维结构的短扩散通道。结果,最佳的NPCNs显示出2065和300 mAh g -1的出色锂存储容量在电流密度分别为 0.05 和 200 A g -1 时,以及良好的循环稳定性。此外,NPCN 还分别在 1 A g -1和 10 A g -1 下表现出优异的储钠性能,分别为 222 和 134 mAh g -1。进一步的电化学分析表明,NPCNs 的优异倍率能力可能归因于表面主导的储能过程。为新一代储能器件高性能电极材料的制备和开发提供了新途径。
更新日期:2021-09-09
down
wechat
bug