Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formability
Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ( IF 2.5 ) Pub Date : 2021-07-04 , DOI: 10.1177/14644207211024686
Mostafa Habibi 1, 2 , Roya Darabi 3, 4 , Jose C de Sa 3 , Ana Reis 3, 4
Affiliation  

Experimental and numerical study regarding the uniaxial tensile test and the forming limit diagram are addressed in this paper for AL2024 with the face-centered cube structure. First, representation of a grain structure can be obtained directly by mapping metallographic observations via scanning electron microscopy approach. Artificial grain microstructures produced by Voronoi Tessellation method are employed in the model using VGRAIN software. By resorting to the finite element software (ABAQUS) capabilities, the constitutive equations of the crystal plasticity were utilized and implemented as a user subroutine material UMAT code. The hardening parameters were calibrated by a trial and error approach in order to fit experimental tensile results with the simulation. Then the effect of the changing grain size, the heterogeneity factor, and the grain aspect ratio were studied for a uniaxial tensile test to emphasize the importance of the microstudy behavior of grains in material behavior. Furthermore, the polycrystal plasticity grain distribution was employed in the Nakazima test in order to obtain the forming limit diagram. The crystal plasticity-driven forming limit diagram reveals more accurate strains, taking into account the involving the micromechanical features of the grains. An innovative approach is pursued in this study to discover the necking angle, both in tensile test or Nakazima samples, showing a good agreement with the experiment results.



中文翻译:

通过晶粒形态对钣金成形性影响的晶体塑性评估进行有限元模拟的创新

本文针对面心立方结构的AL2024进行了单轴拉伸试验和成形极限图的实验和数值研究。首先,通过扫描电子显微镜方法绘制金相观察,可以直接获得晶粒结构的表示。使用VGRAIN 软件在模型中采用Voronoi Tessellation 方法产生的人造晶粒微观结构。通过利用有限元软件 (ABAQUS) 功能,晶体塑性的本构方程被利用并作为用户子程序材料 UMAT 代码实现。硬化参数通过试错法校准,以便将实验拉伸结果与模拟拟合。然后是改变晶粒尺寸的影响,非均质性因素,并且研究了单轴拉伸试验的晶粒纵横比,以强调晶粒微观研究行为在材料行为中的重要性。此外,在 Nakazima 试验中采用多晶塑性晶粒分布以获得成形极限图。考虑到晶粒的微观力学特征,晶体塑性驱动的成形极限图揭示了更准确的应变。本研究采用了一种创新方法来发现拉伸试验或 Nakazima 样品中的颈缩角,与实验结果非常吻合。在Nakazima试验中采用多晶塑性晶粒分布以获得成形极限图。考虑到晶粒的微观力学特征,晶体塑性驱动的成形极限图揭示了更准确的应变。本研究采用了一种创新方法来发现拉伸试验或 Nakazima 样品中的颈缩角,与实验结果非常吻合。在Nakazima试验中采用多晶塑性晶粒分布以获得成形极限图。考虑到晶粒的微观力学特征,晶体塑性驱动的成形极限图揭示了更准确的应变。本研究采用了一种创新方法来发现拉伸试验或 Nakazima 样品中的颈缩角,与实验结果非常吻合。

更新日期:2021-07-05
down
wechat
bug