当前位置: X-MOL 学术Front. Neuroinform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fitting Splines to Axonal Arbors Quantifies Relationship between Branch Order and Geometry
Frontiers in Neuroinformatics ( IF 2.5 ) Pub Date : 2021-07-05 , DOI: 10.3389/fninf.2021.704627
Thomas L Athey 1, 2 , Jacopo Teneggi 2 , Joshua T Vogelstein 1, 2, 3, 4 , Daniel J Tward 5, 6 , Ulrich Mueller 7 , Michael I Miller 1, 2, 3, 4
Affiliation  

Neuromorphology is crucial to identifying neuronal subtypes and understanding learning. It is also implicated in neurological disease. However, standard morphological analysis focuses on macroscopic features such as branching frequency and connectivity between regions, and often neglects the internal geometry of neurons. In this work, we treat neuron trace points as a sampling of differentiable curves and fit them with a set of branching B-splines. We designed our representation with the Frenet-Serret formulas from differential gemoetry in mind. The Frenet-Serret formulas completely characterize smooth curves, and involve two parameters, curvature and torsion. Our representation makes it possible to compute these parameters from neuron traces in closed form. These parameters are defined continuously along the curve, in contrast to other parameters like tortuosity which depend on start and end points. We applied our method to a dataset of cortical projection neurons traced in two mouse brains, and found that the parameters are distributed differently between primary, collateral, and terminal axon branches, thus quantifying geometric differences between different components of an axonal arbor. The results agreed in both brains, further validating our representation. The code used in this work can be readily applied to neuron traces in SWC format and is available in our open-source Python package brainlit: http://brainlit.neurodata.io/.

中文翻译:

将样条拟合到轴索杆量化分支顺序和几何形状之间的关系

神经形态学对于识别神经元亚型和理解学习至关重要。它也与神经系统疾病有关。然而,标准的形态学分析侧重于宏观特征,如分支频率和区域之间的连接性,往往忽略了神经元的内部几何结构。在这项工作中,我们将神经元跟踪点视为可微曲线的采样,并将它们与一组分支 B 样条拟合。我们用微分宝石学中的 Frenet-Serret 公式设计了我们的表示。Frenet-Serret 公式完全表征了平滑曲线,并涉及曲率和扭转两个参数。我们的表示使得从封闭形式的神经元轨迹计算这些参数成为可能。这些参数沿曲线连续定义,与其他参数(例如取决于起点和终点的曲折度)形成对比。我们将我们的方法应用于在两个小鼠大脑中追踪的皮层投射神经元数据集,发现参数在初级、侧支和末端轴突分支之间分布不同,从而量化了轴突乔木不同组件之间的几何差异。结果在两个大脑中都一致,进一步验证了我们的表示。这项工作中使用的代码可以很容易地应用于 SWC 格式的神经元跟踪,并且可以在我们的开源 Python 包 Brainlit 中找到:http://brainlit.neurodata.io/。侧支和末端轴突分支,从而量化轴突乔木不同组件之间的几何差异。结果在两个大脑中都一致,进一步验证了我们的表示。这项工作中使用的代码可以很容易地应用于 SWC 格式的神经元跟踪,并且可以在我们的开源 Python 包 Brainlit 中找到:http://brainlit.neurodata.io/。侧支和末端轴突分支,从而量化轴突乔木不同组件之间的几何差异。结果在两个大脑中都一致,进一步验证了我们的表示。这项工作中使用的代码可以很容易地应用于 SWC 格式的神经元跟踪,并且可以在我们的开源 Python 包 Brainlit 中找到:http://brainlit.neurodata.io/。
更新日期:2021-07-05
down
wechat
bug