当前位置: X-MOL 学术J. Braz. Soc. Mech. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Different strategies for finite element simulations of static mechanical surface treatment processes—a comparative analysis
Journal of the Brazilian Society of Mechanical Sciences and Engineering ( IF 1.8 ) Pub Date : 2021-07-04 , DOI: 10.1007/s40430-021-03085-3
J. T. Maximov 1 , G. V. Duncheva 1 , V. P. Dunchev 1 , A. P. Anchev 1
Affiliation  

Static mechanical surface treatment (MST) processes based on the severe plastic deformation of the surface and subsurface layers improve the surface integrity (SI) of a metal component dramatically and thus its operational properties. The finite element method (FEM) is a basic simulation method used in the numerical investigations of MST processes. Although FEM always requires experimental verification of the results so obtained and an experiment to establish an adequate material constitutive model, this method saves of the researcher significant time and resources. Based on an analysis of the published studies devoted to FE simulations of static MST processes, five basic conditions have been found to be essential in order to build an adequate FE model. The theoretical formulations are then illustrated by creating FE models of the slide diamond burnishing (SDB) process using different strategies to make a comparative analysis between them. SDB is a static MST process with a thermomechanical nature. The adequacy of each FE model, respectively, strategy, is then assessed by comparing the FE results for the residual stresses with the experimental results obtained via the X-ray diffraction technique. It has been shown that a fully coupled thermal-stress 3D FE analysis of an SDB process with nonlinear kinematic hardening should be carried out. When the burnishing velocity is relatively small, the thermal effect can be neglected.



中文翻译:

静态机械表面处理过程有限元模拟的不同策略——比较分析

基于表面和次表面层的严重塑性变形的静态机械表面处理 (MST) 工艺显着提高了金属部件的表面完整性 (SI),从而显着提高了其操作性能。有限元法 (FEM) 是用于 MST 过程数值研究的基本模拟方法。尽管 FEM 总是需要对如此获得的结果进行实验验证,并需要通过实验来建立适当的材料本构模型,但这种方法为研究人员节省了大量的时间和资源。根据对已发表的静态 MST 过程有限元模拟研究的分析,发现五个基本条件对于建立适当的有限元模型是必不可少的。然后通过使用不同的策略创建滑动金刚石抛光 (SDB) 过程的有限元模型来说明理论公式,以便在它们之间进行比较分析。SDB 是具有热机械性质的静态 MST 过程。然后通过将残余应力的有限元结果与通过 X 射线衍射技术获得的实验结果进行比较来评估每个有限元模型的充分性,分别是策略。已经表明,应该对具有非线性运动硬化的 SDB 过程进行完全耦合的热应力 3D 有限元分析。当抛光速度较小时,热效应可以忽略不计。然后通过将残余应力的有限元结果与通过 X 射线衍射技术获得的实验结果进行比较来评估每个有限元模型的充分性,分别是策略。已经表明,应该对具有非线性运动硬化的 SDB 过程进行完全耦合的热应力 3D 有限元分析。当抛光速度较小时,热效应可以忽略不计。然后通过将残余应力的有限元结果与通过 X 射线衍射技术获得的实验结果进行比较来评估每个有限元模型的充分性,分别是策略。已经表明,应该对具有非线性运动硬化的 SDB 过程进行完全耦合的热应力 3D 有限元分析。当抛光速度较小时,热效应可以忽略不计。

更新日期:2021-07-04
down
wechat
bug