当前位置: X-MOL 学术Eng. Appl. Comput. Fluid Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adjoint-based shape optimization for the minimization of flow-induced hemolysis in biomedical applications
Engineering Applications of Computational Fluid Mechanics ( IF 6.1 ) Pub Date : 2021-07-02 , DOI: 10.1080/19942060.2021.1943532
Georgios Bletsos 1 , Niklas Kühl 1 , Thomas Rung 1
Affiliation  

This paper reports on the derivation and implementation of a shape optimization procedure for the minimization of hemolysis induction in blood flows through biomedical devices.Despite the significant progress in relevant experimental studies, the ever-growing advances in computational science have made computational fluid dynamics an indispensable tool for the design of biomedical devices. However, even the latter can lead to a restrictive cost when the model requires an extensive number of computational elements or when the simulation needs to be overly repeated. This work aims at the formulation of a continuous adjoint complement to a power-law hemolysis prediction model dedicated to efficiently identifying the shape sensitivity to hemolysis. The proposed approach can accompany any gradient-based optimization method at the cost of approximately one additional flow solution per shape update. The approach is verified against analytical solutions of a benchmark problem and computed sensitivity derivatives are validated by a finite differences study on a generic 2D stenosed geometry. The included application addresses a 3D ducted geometry which features typical characteristics of blood-carrying devices. An optimized shape, leading to a potential improvement up to 22%, is identified. It is shown that the improvement persists for different hemolysis-evaluation parameters.



中文翻译:

在生物医学应用中最小化流动引起的溶血的基于伴随的形状优化

本文报告了一种形状优化程序的推导和实现,以最大限度地减少通过生物医学设备的血流中的溶血诱导。 尽管相关实验研究取得了重大进展,但计算科学的不断进步使计算流体动力学成为不可或缺的用于设计生物医学设备的工具。然而,当模型需要大量计算元素或模拟需要过度重复时,即使是后者也会导致限制性成本。这项工作旨在制定幂律溶血预测模型的连续伴随补充,该模型致力于有效识别溶血的形状敏感性。所提出的方法可以伴随任何基于梯度的优化方法,代价是每次形状更新大约需要一个额外的流动解决方案。该方法针对基准问题的解析解进行了验证,并且计算的灵敏度导数通过对通用 2D 狭窄几何结构的有限差分研究进行验证。所包含的应用程序解决了 3D 管道几何形状,该几何形状具有载血设备的典型特征。确定了一种优化的形状,可实现高达 22% 的潜在改进。结果表明,对于不同的溶血评估参数,改进持续存在。该方法针对基准问题的解析解进行了验证,并且计算的灵敏度导数通过对通用 2D 狭窄几何结构的有限差分研究进行验证。所包含的应用程序解决了 3D 管道几何形状,该几何形状具有载血设备的典型特征。确定了一种优化的形状,可实现高达 22% 的潜在改进。结果表明,对于不同的溶血评估参数,改进持续存在。该方法针对基准问题的解析解进行了验证,并且计算的灵敏度导数通过对通用 2D 狭窄几何结构的有限差分研究进行验证。所包含的应用程序解决了 3D 管道几何形状,该几何形状具有载血设备的典型特征。确定了一种优化的形状,可实现高达 22% 的潜在改进。结果表明,对于不同的溶血评估参数,改进持续存在。

更新日期:2021-07-04
down
wechat
bug