当前位置: X-MOL 学术J. Strain Anal. Eng. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of pore shape on impact dynamics characteristics of functionally graded brittle materials
The Journal of Strain Analysis for Engineering Design ( IF 1.4 ) Pub Date : 2021-07-03 , DOI: 10.1177/03093247211029792
Yongqiang Li 1, 2 , Nianzhu Wang 1 , Wenkai Yao 1 , Tao Wang 1 , Mao Zhou 1
Affiliation  

Improving the impact energy dissipation capacity of functionally graded brittle materials through pore design will help avoid or delay failure. In order to improve the impact energy dissipation capacity of functionally graded brittle materials, pores with specific shapes can be implanted inside them. The effect of pore shape on the impact properties of functionally graded brittle materials was investigated using a lattice-spring model that can quantitatively represent the mechanical properties of functionally graded brittle materials. The calculated results show that the pores with negative Poisson’s ratio such as inner-concave triangle, fourth-order star, and inner-concave hexagon are easy to collapse under the impact, while the square and square-hexagon pores have the strongest resistance to deformation. For all seven pore shapes, the Hugoniot elastic limit of the samples decreased gradually with increasing porosity, and the Hugoniot elastic limit did not change with the change of piston velocity. The propagation velocity of the deformation wave increases with the piston velocity and the velocity of the particle corresponding to the Hugoniot state behind the deformation wave increases accordingly. The principle that pores can enhance the macroscopic impact energy dissipation capacity of functionally graded brittle material samples revealed in this paper will contribute to the prevention of sample impact failure and provide guidance for the optimal design of impact kinetic properties of samples.



中文翻译:

孔隙形状对功能梯度脆性材料冲击动力学特性的影响

通过孔隙设计提高功能梯度脆性材料的冲击能量耗散能力将有助于避免或延迟失效。为了提高功能梯度脆性材料的冲击能量耗散能力,可以在其内部植入特定形状的孔隙。使用可以定量表示功能梯度脆性材料力学性能的晶格弹簧模型,研究了孔形状对功能梯度脆性材料冲击性能的影响。计算结果表明,内凹三角形、四阶星形、内凹六边形等泊松比为负的孔隙在冲击下容易坍塌,而方形和正六边形孔隙抗变形能力最强。 . 对于所有七种孔隙形状,样品的 Hugoniot 弹性极限随着孔隙率的增加而逐渐减小,Hugoniot 弹性极限不随活塞速度的变化而变化。变形波的传播速度随着活塞速度的增加而增加,变形波后面对应于 Hugoniot 态的粒子的速度也相应增加。本文揭示的孔隙可以增强功能梯度脆性材料样品宏观冲击能量耗散能力的原理,将有助于防止样品冲击失效,并为样品冲击动力学性能的优化设计提供指导。变形波的传播速度随着活塞速度的增加而增加,变形波后面对应于 Hugoniot 态的粒子的速度也相应增加。本文揭示的孔隙可以增强功能梯度脆性材料样品宏观冲击能量耗散能力的原理,将有助于防止样品冲击失效,并为样品冲击动力学性能的优化设计提供指导。变形波的传播速度随着活塞速度的增加而增加,变形波后面对应于 Hugoniot 态的粒子的速度也相应增加。本文揭示的孔隙可以增强功能梯度脆性材料样品宏观冲击能量耗散能力的原理,将有助于防止样品冲击失效,并为样品冲击动力学性能的优化设计提供指导。

更新日期:2021-07-04
down
wechat
bug