当前位置: X-MOL 学术Desalination › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrically conductive hydrophobic membrane cathode for membrane distillation with super anti-oil-fouling capability: Performance and mechanism
Desalination ( IF 9.9 ) Pub Date : 2021-07-01 , DOI: 10.1016/j.desal.2021.115199
Minyuan Han , Yuting Wang , Jingmei Yao , Caihong Liu , Jia Wei Chew , Yi Wang , Yingchao Dong , Le Han

This study mainly focused on enhancing oil-membrane electrostatic repulsion towards anti-oil-fouling via electrically conductive hydrophobic membrane in electricity-assisted membrane distillation (MD). Carbon nanotubes (CNTs) were coated on commercial membranes to fabricate membrane cathode. For concentrated hexadecane-in-saline water emulsions, the modified membrane exhibited significantly less flux decline, < 5% in dealing with extreme high-concentration oil emulsion (2000 ppm) at cell potential of 3.0 V. The anti-oil-fouling robustness was further confirmed over a continuous three-cycle operation with in-situ DI rinse. The anti-fouling mechanism was systematically discussed regarding the hydrophilicity of the membrane interface, charge repulsion between the oil and membrane cathode as well as slippery property at the liquid-gas-solid triple-phase interface. A modeled fouling rate constant was negatively associated with the calculated capacitive surface charge of the membrane cathode. Thermodynamics analysis suggested enhanced foulant-membrane electrostatic repulsion leads to a significant energy barrier which favored anti-fouling performance. Interestingly, the sliding dynamics of oil droplet along the interface of membrane cathode was found, tuned by the herein weak cell potential, which could also contribute to the fouling mitigation. Our results insight that the electrically conductive membrane cathode could modulate the foulant-membrane interaction which plays an important role in mitigating fouling/wetting occurred at the triple-phase interface.



中文翻译:

具有超强抗油污能力的膜蒸馏用导电疏水膜阴极:性能和机理

这项研究主要集中在通过电辅助膜蒸馏(MD)中的导电疏水膜增强油膜静电排斥以防止油污。碳纳米管(CNT)被涂覆在商业膜上以制造膜阴极。对于浓十六烷盐水乳液,改性膜表现出显着较小的通量下降,在电池电位为 3.0 V 时处理极高浓度油乳液(2000 ppm)时< 5%。抗油污稳定性为在使用原位 DI 冲洗的连续三循环操作中进一步证实了这一点。系统讨论了膜界面亲水性的防污机理,油和膜阴极之间的电荷排斥以及液-气-固三相界面的光滑性。模拟的结垢速率常数与计算出的膜阴极电容表面电荷呈负相关。热力学分析表明,增强的污垢 - 膜静电排斥导致显着的能量屏障,有利于防污性能。有趣的是,发现了油滴沿膜阴极界面的滑动动力学,由此处微弱的电池电位调节,这也可能有助于减少污垢。我们的研究结果表明,导电膜阴极可以调节污垢 - 膜相互作用,这在减轻三相界面处发生的污垢/润湿方面起着重要作用。模拟的结垢速率常数与计算出的膜阴极电容表面电荷呈负相关。热力学分析表明,增强的污垢 - 膜静电排斥导致显着的能量屏障,有利于防污性能。有趣的是,发现了油滴沿膜阴极界面的滑动动力学,由此处微弱的电池电位调节,这也可能有助于减少污垢。我们的研究结果表明,导电膜阴极可以调节污垢 - 膜相互作用,这在减轻三相界面处发生的污垢/润湿方面起着重要作用。模拟的结垢速率常数与计算出的膜阴极电容表面电荷呈负相关。热力学分析表明,增强的污垢 - 膜静电排斥导致显着的能量屏障,有利于防污性能。有趣的是,发现了油滴沿膜阴极界面的滑动动力学,通过此处微弱的电池电位进行调整,这也有助于减少污垢。我们的研究结果表明,导电膜阴极可以调节污垢 - 膜相互作用,这在减轻三相界面处发生的污垢/润湿方面起着重要作用。热力学分析表明,增强的污垢 - 膜静电排斥导致显着的能量屏障,有利于防污性能。有趣的是,发现了油滴沿膜阴极界面的滑动动力学,通过此处微弱的电池电位进行调整,这也有助于减少污垢。我们的研究结果表明,导电膜阴极可以调节污垢 - 膜相互作用,这在减轻三相界面处发生的污垢/润湿方面起着重要作用。热力学分析表明,增强的污垢 - 膜静电排斥导致显着的能量屏障,有利于防污性能。有趣的是,发现了油滴沿膜阴极界面的滑动动力学,通过此处微弱的电池电位进行调整,这也有助于减少污垢。我们的研究结果表明,导电膜阴极可以调节污垢 - 膜相互作用,这在减轻三相界面处发生的污垢/润湿方面起着重要作用。这也有助于减少结垢。我们的研究结果表明,导电膜阴极可以调节污垢 - 膜相互作用,这在减轻三相界面处发生的污垢/润湿方面起着重要作用。这也有助于减少结垢。我们的研究结果表明,导电膜阴极可以调节污垢 - 膜相互作用,这在减轻三相界面处发生的污垢/润湿方面起着重要作用。

更新日期:2021-07-02
down
wechat
bug