当前位置: X-MOL 学术J. Ind. Text. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Living textile biocomposites deliver enhanced carbon dioxide capture
Journal of Industrial Textiles ( IF 3.2 ) Pub Date : 2021-07-02 , DOI: 10.1177/15280837211025725
Pichaya In-na 1 , Jonathan Lee 1 , Gary Caldwell 2
Affiliation  

Over 110 million tonnes of textile fibres and apparel are produced annually, ultimately ending with significant quantities of waste textiles. One route for upcycling end-of-life textiles is to repurpose the materials for atmospheric carbon dioxide (CO2) removal by integrating microalgae (single celled photosynthetic organisms) to form ‘living’ biocomposites. In this study we demonstrate the CO2 capture performance of prototype living algae biocomposites that use textiles as a solid substrate. Chlorella vulgaris was attached to 100% cotton and 100% polyester sheets, of which half were coated with kappa-carrageenan (a natural polymer derived from seaweed) as a gel topcoat to enhance microalgae retention. The biocomposites were investigated in 28 days semi-batch CO2 absorption tests using a 5% v/v CO2/air gas mixture. They absorbed significantly more CO2 than suspension microalgae culture controls, with the highest CO2 absorption rate being 1.82 ± 0.10 g CO2 g−1biomass d−1 from the coated cotton biocomposites, followed by 1.55 ± 0.27 g CO2 g−1biomass d−1 from the uncoated cotton biocomposites. The coated and uncoated polyester biocomposites had comparatively lower CO2 absorption rates (0.49 ± 0.04 and 0.42 ± 0.03 g CO2 g−1biomass d−1 respectively), likely due to the surface charges of the materials affecting microalgae adhesion and retention. A two weeks attachment test on cotton/polyester blends revealed some deterioration of the cotton which could limit the longevity of the biocomposites. Despite these issues, the CO2 abatement values compare favourably with other Chlorella CO2 capture studies with the added benefit of much reduced water usage and a reduced land requirement.



中文翻译:

活纺织生物复合材料提供增强的二氧化碳捕获

每年生产超过 1.1 亿吨纺织纤维和服装,最终产生大量废弃纺织品。对报废纺织品进行升级回收的一种途径是通过整合微藻(单细胞光合生物)形成“活的”生物复合材料来重新利用材料以去除大气中的二氧化碳 (CO 2 )。在这项研究中,我们展示了使用纺织品作为固体基质的原型活藻类生物复合材料的 CO 2捕获性能。小球藻附着在 100% 棉和 100% 聚酯片材上,其中一半涂有 kappa-角叉菜胶(一种源自海藻的天然聚合物)作为凝胶面漆,以增强微藻的保留能力。使用 5% v/v CO 2 /空气气体混合物在 28 天半间歇 CO 2吸收测试中研究生物复合材料。它们吸收的 CO 2明显多于悬浮微藻培养对照,最高的 CO 2吸收率为 1.82 ± 0.10 g CO 2  g -1生物量 d -1来自涂层棉生物复合材料,其次是 1.55 ± 0.27 g CO 2  g -1生物量 d -1来自未涂层的棉生物复合材料。涂层和未涂层​​聚酯生物复合材料具有相对较低的 CO 2吸收率(分别为 0.49 ± 0.04 和 0.42 ± 0.03 g CO 2  g -1生物质 d -1),这可能是由于材料的表面电荷影响微藻粘附和保留。对棉/聚酯混纺进行为期两周的附着测试表明,棉出现了一些变质,这可能会限制生物复合材料的使用寿命。尽管存在这些问题,但与其他小球藻CO 2捕获研究相比,CO 2减排值具有显着减少用水量和减少土地需求的额外好处。

更新日期:2021-07-02
down
wechat
bug