当前位置: X-MOL 学术Front. Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Desulfurization of vulcanized rubber particles using biological and chemical methods
Frontiers in Environmental Science ( IF 3.3 ) Pub Date : 2021-07-02 , DOI: 10.3389/fenvs.2021.633165
C. Valdés , C. Hernández , R. Morales-Vera , R. Andler

Currently, recycling or degradation treatments for tires are an enormous challenge. Despite efforts to dispose of or recycle it, rubber waste is increasing year by year worldwide. To create a rubber-recycling system, several researchers have proposed tire desulfurization. In this study, we compare two methods: one biological, using Acidobacillus ferroxidans in shake 250 mL flask experiments, and one chemical using, for the first time, microwaves and an aqueous solution. The results of these methods were analyzed through sulfate quantification, cross-linking differences, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy with energy disperse spectroscopy (SEM-EDS). We observed that the amount of sulfates generated by the chemical system was 22.40 (mg/L)/g of rubber, which was 22-times higher than the biological system, which generated 1.06 (mg/L)/g of rubber. Similarly, after cross-linking studies, a 36% higher decrease after the chemical treatment was observed. When using FTIR analysis, the disappearance of characteristic bands corresponding to functional groups containing sulfur bonds was observed by treating the sample with both desulfurization mechanisms. Morphological changes on the rubber surface structure was also demonstrated by SEM-EDS analysis with the appearance of holes, cracks and changes in the porosity of the material. This work analyzed two different non-aggressive desulfurization mechanisms that might be used as sustainable methods for rubber recycling processes.

中文翻译:

使用生物和化学方法对硫化橡胶颗粒进行脱硫

目前,轮胎的回收或降解处理是一个巨大的挑战。尽管努力处理或回收橡胶废物,但全球范围内的橡胶废物仍在逐年增加。为了创建橡胶回收系统,一些研究人员提出了轮胎脱硫。在这项研究中,我们比较了两种方法:一种是生物方法,在 250 毫升烧瓶实验中使用氧化亚酸杆菌,另一种是首次使用微波和水溶液的化学方法。这些方法的结果通过硫酸盐定量、交联差异、傅里叶变换红外光谱 (FTIR) 和具有能量色散光谱的扫描电子显微镜 (SEM-EDS) 进行分析。我们观察到化学系统产生的硫酸盐量为22.40(mg/L)/g橡胶,比生物系统高22倍,这产生了 1.06 (mg/L)/g 的橡胶。同样,在交联研究后,观察到化学处理后降低了 36%。当使用 FTIR 分析时,通过用两种脱硫机制处理样品,观察到对应于含有硫键的官能团的特征带消失。SEM-EDS 分析也证明了橡胶表面结构的形态变化,包括孔洞、裂纹的出现和材料孔隙率的变化。这项工作分析了两种不同的非侵入性脱硫机制,它们可能用作橡胶回收过程的可持续方法。通过用两种脱硫机制处理样品,观察到对应于含有硫键的官能团的特征带消失。SEM-EDS 分析也证明了橡胶表面结构的形态变化,包括孔洞、裂纹的出现和材料孔隙率的变化。这项工作分析了两种不同的非侵入性脱硫机制,它们可能用作橡胶回收过程的可持续方法。通过用两种脱硫机制处理样品,观察到对应于含有硫键的官能团的特征带消失。SEM-EDS 分析也证明了橡胶表面结构的形态变化,包括孔洞、裂纹的出现和材料孔隙率的变化。这项工作分析了两种不同的非侵入性脱硫机制,它们可能用作橡胶回收过程的可持续方法。
更新日期:2021-07-02
down
wechat
bug