当前位置: X-MOL 学术J. Vac. Sci. Technol. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Superconformal chemical vapor deposition using plasma-generated atomic species as a consumable growth inhibitor
Journal of Vacuum Science & Technology A ( IF 2.4 ) Pub Date : 2021-05-18 , DOI: 10.1116/6.0001018
Yu Yang 1 , Kinsey L. Canova 1 , Sreenivas Jayaraman 1 , Do-Young Kim 2 , Gregory S. Girolami 2 , John R. Abelson 1
Affiliation  

We describe a convenient and broadly applicable method that affords the superconformal growth of films in trenches and other recessed features by chemical vapor deposition, here applied to the growth of the metal diborides CrB2 and HfB2. A flux of atomic hydrogen or nitrogen, generated by a remote plasma source, strongly inhibits growth near the feature opening, possibly by tying up dangling bonds. In a trench, the flux of atomic species declines rapidly with depth due to wall reactions, either by recombination to afford inactive H2 or N2 or incorporation into the film. As a result, the inhibition effect decreases with depth, and the growth is almost uninhibited toward the bottom of the feature. These circumstances produce a superconformal, “V-shaped” growth profile with the vertex toward the bottom. With continued deposition, the vertex moves up and out of the feature without pinch-off, i.e., no void or seam. The use of atomic hydrogen as the inhibitor of the CrB2 growth introduces no significant impurities and does not alter the film stoichiometry, in contrast, atomic nitrogen becomes incorporated into the HfB2 film. A model of the trench filling is developed, which uses lumped kinetic parameters to calculate the film growth rate and the Knudsen diffusion to calculate transport down the axis of the trench. Model calculations agree well with experimental film thickness profiles as a function of growth time, showing that the model can be used to determine the optimal inhibitor flux as a function of the trench aspect ratio. This method should be applicable to the superconformal growth of a wide variety of film compositions as well.

中文翻译:

使用等离子体生成的原子种类作为消耗性生长抑制剂的超共形化学气相沉积

我们描述了一种方便且广泛适用的方法,该方法通过化学气相沉积在沟槽和其他凹陷特征中提供薄膜的超保形生长,这里应用于金属二硼化物 CrB 2和 HfB 2的生长。由远程等离子体源产生的氢原子或氮原子流强烈地抑制了特征开口附近的生长,可能是通过束缚悬空键。在沟槽中,由于壁反应,原子种类的通量随深度快速下降,通过复合提供非活性 H 2或 N 2或融入电影。结果,抑制效果随着深度的增加而减弱,并且朝向特征底部的生长几乎不受抑制。这些情况会产生一个顶点朝下的超共形“V 形”生长曲线。随着继续沉积,顶点向上移动并移出特征而不会夹断,即没有空隙或接缝。使用原子氢作为 CrB 2生长的抑制剂不会引入显着的杂质并且不会改变膜的化学计量,相反,原子氮被结合到 HfB 2 中电影。开发了一个沟槽填充模型,该模型使用集总动力学参数来计算膜生长速率,并使用 Knudsen 扩散来计算沿沟槽轴的传输。模型计算与作为生长时间函数的实验膜厚度分布非常吻合,表明该模型可用于确定作为沟槽纵横比函数的最佳抑制剂通量。这种方法也适用于各种薄膜成分的超共形生长。
更新日期:2021-07-02
down
wechat
bug