当前位置: X-MOL 学术Mech. Time Depend. Mat. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and numerical models to study the creep behavior of the unidirectional Alfa fiber composite strength by the photoelasticity method
Mechanics of Time-Dependent Materials ( IF 2.1 ) Pub Date : 2021-07-01 , DOI: 10.1007/s11043-021-09500-5
N. Berrekheroukh , Z. Sereir , A. Vivet , E. A. Adda Bedia , A. Fekrar

In this paper, we propose an experimental and numerical model to study the creep behavior of the unidirectional Alfa fiber composite strength by the photoelasticity method. To have better mechanical properties, chemical treatment is made for Alfa fibers. Tensile tests are made to predict the Young modulus and tensile strength. These tests confirm that the chemical treatment during 48 Hours of Alfa fibers collected from the south region gives the best results. After that, specimens are made in Medapoxy STR resin and treated Alfa fibers of the south region. All fibers of specimens are arranged approximately in multiple hexagonal clusters embedded in the matrix. For the micromechanical fiber stress redistribution or load sharing theory to be applied, clusters must minimally contain one broken fiber. Consequently, we have a stress perturbation due to a fiber fracture, which propagates to the nearest-neighbor fibers. This perturbation enables us the photoelastic visualization of the fracture events during the creep tests. The contour diagram and fringe values give us the accurate distribution of stress near broken fibers showing local shear stress concentrations during the time. To simulate the creep response and failure mechanism, the Tsai–Wu failure criterion was applied on ANSYS explicit dynamic software. Because it merges between experimental tests and numerical simulation, the present study offers a real scientific contribution in the creep behavior of biobased composite strength by the photoelasticity method.



中文翻译:

用光弹性方法研究单向阿尔法纤维复合材料强度蠕变行为的实验和数值模型

在本文中,我们提出了一个实验和数值模型,通过光弹性方法研究单向阿尔法纤维复合材料强度的蠕变行为。为了获得更好的机械性能,对阿尔法纤维进行了化学处理。进行拉伸试验以预测杨氏模量和拉伸强度。这些测试证实,在 48 小时内对从南部地区收集的阿尔法纤维进行化学处理可获得最佳结果。之后,用 Medapoxy STR 树脂和处理过的南部地区的 Alfa 纤维制作样品。试样的所有纤维大致排列成嵌入基质中的多个六边形簇。对于要应用的微机械纤维应力再分配或负载共享理论,簇必须至少包含一根断裂的纤维。最后,由于纤维断裂,我们有一个应力扰动,它传播到最近的相邻纤维。这种扰动使我们能够在蠕变测试期间对断裂事件进行光弹性可视化。等高线图和条纹值为我们提供了断裂纤维附近应力的准确分布,显示了该时间段内的局部剪切应力集中。为了模拟蠕变响应和破坏机制,在 ANSYS 显式动态软件上应用 Tsai-Wu 破坏准则。由于它融合了实验测试和数值模拟,本研究通过光弹性方法为生物基复合材料强度的蠕变行为提供了真正的科学贡献。这种扰动使我们能够在蠕变测试期间对断裂事件进行光弹性可视化。等高线图和条纹值为我们提供了断裂纤维附近应力的准确分布,显示了该时间段内的局部剪切应力集中。为了模拟蠕变响应和破坏机制,在 ANSYS 显式动态软件上应用 Tsai-Wu 破坏准则。由于它融合了实验测试和数值模拟,本研究通过光弹性方法为生物基复合材料强度的蠕变行为提供了真正的科学贡献。这种扰动使我们能够在蠕变测试期间对断裂事件进行光弹性可视化。等高线图和条纹值为我们提供了断裂纤维附近应力的准确分布,显示了该时间段内的局部剪切应力集中。为了模拟蠕变响应和破坏机制,在 ANSYS 显式动态软件上应用 Tsai-Wu 破坏准则。由于它融合了实验测试和数值模拟,本研究通过光弹性方法为生物基复合材料强度的蠕变行为提供了真正的科学贡献。Tsai-Wu 失效准则应用于 ANSYS 显式动态软件。由于它融合了实验测试和数值模拟,本研究通过光弹性方法为生物基复合材料强度的蠕变行为提供了真正的科学贡献。Tsai-Wu 失效准则应用于 ANSYS 显式动态软件。由于它融合了实验测试和数值模拟,本研究通过光弹性方法为生物基复合材料强度的蠕变行为提供了真正的科学贡献。

更新日期:2021-07-01
down
wechat
bug