当前位置: X-MOL 学术Hortic. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Conductivity of the phloem in mango (Mangifera indica L.)
Horticulture Research ( IF 7.6 ) Pub Date : 2021-07-01 , DOI: 10.1038/s41438-021-00584-1
Miguel Barceló-Anguiano 1 , José I Hormaza 1 , Juan M Losada 1
Affiliation  

Mango (Mangifera indica L., Anacardiaceae), the fifth most consumed fruit worldwide, is one of the most important fruit crops in tropical regions, but its vascular anatomy is quite unexplored. Previous studies examined the xylem structure in the stems of mango, but the anatomy of the phloem has remained elusive, leaving the long-distance transport of photoassimilates understudied. We combined fluorescence and electron microscopy to evaluate the structure of the phloem tissue in the tapering branches of mango trees, and used this information to describe the hydraulic conductivity of its sieve tube elements following current models of fluid transport in trees. We revealed that the anatomy of the phloem changes from current year branches, where it was protected by pericyclic fibres, to older ones, where the lack of fibres was concomitant with laticiferous canals embedded in the phloem tissue. Callose was present in the sieve plates, but also in the walls of the phloem sieve cells, making them discernible from other phloem cells. A scaling geometry of the sieve tube elements—including the number of sieve areas and the pore size across tapering branches—resulted in an exponential conductivity towards the base of the tree. These evaluations in mango fit with previous measurements of the phloem architecture in the stems of forest trees, suggesting that, despite agronomic management, the phloem sieve cells scale with the tapering branches. The pipe model theory applied to the continuous tubing system of the phloem appears as a good approach to understand the hydraulic transport of photoassimilates in fruit trees.

中文翻译:

芒果韧皮部的电导率 (Mangifera indica L.)

芒果 (芒果L.,漆树科)是全球第五大消费水果,是热带地区最重要的水果作物之一,但其血管解剖结构尚待探索。以前的研究检查了芒果茎中的木质部结构,但韧皮部的解剖结构仍然难以捉摸,光同化物的长距离运输没有得到充分研究。我们结合荧光和电子显微镜来评估芒果树逐渐变细的树枝中韧皮部组织的结构,并使用这些信息来描述其筛管元件的水力传导率,遵循当前树木中的流体传输模型。我们揭示了韧皮部的解剖结构从当年的分支(受周环纤维保护)到较老的分支,其中纤维的缺乏伴随着嵌入韧皮部组织的乳管。胼胝质存在于筛板中,但也存在于韧皮部筛细胞的壁中,使它们与其他韧皮部细胞区分开来。筛管元件的比例几何结构——包括筛区的数量和锥形分支的孔径——导致向树根部的指数电导率。这些对芒果的评估与之前对林木茎韧皮部结构的测量结果相吻合,这表明尽管进行了农艺管理,但韧皮部筛细胞随着逐渐变细的树枝而缩放。应用于韧皮部连续管道系统的管道模型理论似乎是理解果树中光同化物水力传输的好方法。胼胝质存在于筛板中,但也存在于韧皮部筛细胞的壁中,使它们与其他韧皮部细胞区分开来。筛管元件的比例几何结构——包括筛区的数量和锥形分支的孔径——导致向树根部的指数电导率。这些对芒果的评估与之前对林木茎韧皮部结构的测量结果相吻合,这表明尽管进行了农艺管理,但韧皮部筛细胞随着逐渐变细的树枝而缩放。应用于韧皮部连续管道系统的管道模型理论似乎是理解果树中光同化物水力传输的好方法。胼胝质存在于筛板中,但也存在于韧皮部筛细胞的壁中,使它们与其他韧皮部细胞区分开来。筛管元件的比例几何结构——包括筛区的数量和锥形分支的孔径——导致向树根部的指数电导率。这些对芒果的评估与之前对林木茎韧皮部结构的测量结果相吻合,这表明尽管进行了农艺管理,但韧皮部筛细胞随着逐渐变细的树枝而缩放。应用于韧皮部连续管道系统的管道模型理论似乎是理解果树中光同化物水力传输的好方法。筛管元件的比例几何结构——包括筛区的数量和锥形分支的孔径——导致向树根部的指数电导率。这些对芒果的评估与之前对林木茎韧皮部结构的测量结果相吻合,这表明尽管进行了农艺管理,但韧皮部筛细胞随着逐渐变细的树枝而缩放。应用于韧皮部连续管道系统的管道模型理论似乎是理解果树中光同化物水力传输的好方法。筛管元件的比例几何结构——包括筛区的数量和锥形分支的孔径——导致向树根部的指数电导率。这些对芒果的评估与之前对林木茎韧皮部结构的测量结果相吻合,这表明尽管进行了农艺管理,但韧皮部筛细胞随着逐渐变细的树枝而缩放。应用于韧皮部连续管道系统的管道模型理论似乎是理解果树中光同化物水力传输的好方法。这些对芒果的评估与之前对林木茎韧皮部结构的测量结果相吻合,这表明尽管进行了农艺管理,但韧皮部筛细胞随着逐渐变细的树枝而缩放。应用于韧皮部连续管道系统的管道模型理论似乎是理解果树中光同化物水力传输的好方法。这些对芒果的评估与之前对林木茎韧皮部结构的测量结果相吻合,这表明尽管进行了农艺管理,但韧皮部筛细胞随着逐渐变细的树枝而缩放。应用于韧皮部连续管道系统的管道模型理论似乎是理解果树中光同化物水力传输的好方法。
更新日期:2021-07-01
down
wechat
bug