当前位置: X-MOL 学术Nat. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Realization of a bosonic antiferromagnet
Nature Physics ( IF 17.6 ) Pub Date : 2021-07-01 , DOI: 10.1038/s41567-021-01277-1
Hui Sun , Bing Yang , Han-Yi Wang , Zhao-Yu Zhou , Guo-Xian Su , Han-Ning Dai , Zhen-Sheng Yuan , Jian-Wei Pan

Quantum antiferromagnets are of broad interest in condensed-matter physics as they provide a platform for studying exotic many-body states1 including spin liquids2 and high-temperature superconductors3. Here we report on the creation of a one-dimensional Heisenberg antiferromagnet with ultracold bosons. In a two-component Bose–Hubbard system, we switch the sign of the spin-exchange interaction and realize the isotropic antiferromagnetic Heisenberg model in an extended 70-site chain. Starting from a low-entropy Néel-ordered state, we use optimized adiabatic passage to approach the bosonic antiferromagnet. We demonstrate the establishment of antiferromagnetism by probing the evolution of staggered magnetization and spin correlations of the system. Compared with condensed-matter systems, ultracold gases in optical lattices can be microscopically engineered and measured, offering remarkable advantages for exploring bosonic magnetism and spin dynamics4.



中文翻译:

玻色子反铁磁体的实现

量子反铁磁体在凝聚态物理中引起了广泛的兴趣,因为它们为研究奇异的多体状态1提供了一个平台,包括自旋液体2和高温超导体3. 在这里,我们报告了具有超冷玻色子的一维海森堡反铁磁体的创建。在双分量 Bose-Hubbard 系统中,我们转换了自旋交换相互作用的符号,并在扩展的 70 位点链中实现了各向同性的反铁磁 Heisenberg 模型。从低熵 Néel 有序状态开始,我们使用优化的绝热通道来接近玻色子反铁磁体。我们通过探测系统的交错磁化和自旋相关性的演变来证明反铁磁性的建立。与凝聚态系统相比,光学晶格中的超冷气体可以进行微观工程和测量,为探索玻色子磁性和自旋动力学4提供了显着优势。

更新日期:2021-07-01
down
wechat
bug