当前位置: X-MOL 学术Sci. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Toward a living soft microrobot through optogenetic locomotion control of Caenorhabditis elegans
Science Robotics ( IF 26.1 ) Pub Date : 2021-06-30 , DOI: 10.1126/scirobotics.abe3950
Xianke Dong 1, 2 , Sina Kheiri 1 , Yangning Lu 3, 4 , Zhaoyi Xu 1 , Mei Zhen 3, 4 , Xinyu Liu 1, 5
Affiliation  

Learning from the locomotion of natural organisms is one of the most effective strategies for designing microrobots. However, the development of bioinspired microrobots is still challenging because of technical bottlenecks such as design and seamless integration of high-performance actuation mechanism and high-density energy source for untethered locomotion. Directly harnessing the activation energy and intelligence of living tissues in synthetic micromachines provides an alternative route to developing biohybrid microrobots. Here, we propose an approach to engineering the genetic and nervous systems of a nematode worm, Caenorhabditis elegans, and creating an untethered, highly controllable living soft microrobot (called “RoboWorm”). A living worm is engineered through optogenetic and biochemical methods to shut down the signal transmissions between its neuronal and muscular systems while its muscle cells still remain optically excitable. Through dynamic modeling and experimental verification of the worm crawling, we found that the phase difference between the worm body curvature and the muscular activation pattern generates the thrust force for crawling locomotion. By reproducing the phase difference via optogenetic excitation of the worm body muscles, we emulated the major worm crawling behaviors in a controllable manner. Furthermore, with real-time visual feedback of the worm crawling, we realized closed-loop regulation of the movement direction and destination of single worms. This technology may facilitate scientific studies on the biophysics and neural basis of crawling locomotion of C. elegans and other nematode species.



中文翻译:

通过对秀丽隐杆线虫的光遗传学运动控制实现活的软微型机器人

从自然生物的运动中学习是设计微型机器人的最有效策略之一。然而,由于高性能驱动机制和高密度能源的设计和无缝集成等技术瓶颈,仿生微型机器人的开发仍然具有挑战性。直接利用合成微型机器中活组织的活化能和智能为开发生物混合微型机器人提供了另一种途径。在这里,我们提出了一种改造线虫(Caenorhabditis elegans)的遗传和神经系统的方法,并创造了一个不受束缚、高度可控的活体软体微型机器人(称为“RoboWorm”)。活的蠕虫通过光遗传学和生化方法进行设计,以关闭其神经元和肌肉系统之间的信号传输,同时其肌肉细胞仍保持光学兴奋。通过蠕虫爬行的动力学建模和实验验证,我们发现蠕虫身体曲率和肌肉激活模式之间的相位差产生了爬行运动的推力。通过对蠕虫身体肌肉的光遗传学激发再现相位差,我们以可控的方式模拟了主要蠕虫的爬行行为。此外,通过蠕虫爬行的实时视觉反馈,我们实现了单个蠕虫运动方向和目的地的闭环调节。C. 线虫和其他线虫物种。

更新日期:2021-07-01
down
wechat
bug