当前位置: X-MOL 学术J. Dispers. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Darcy–Forchheimer higher-order slip flow of Eyring–Powell nanofluid with nonlinear thermal radiation and bioconvection phenomenon
Journal of Dispersion Science and Technology ( IF 1.9 ) Pub Date : 2021-07-01 , DOI: 10.1080/01932691.2021.1942035
Muhammad Mubashir Bhatti 1 , Kamel Al-Khaled 2 , Sami Ullah Khan 3 , Wathek Chammam 4 , Muhammad Awais 5
Affiliation  

Abstract

Recently, nanoengineering has evolved to utilize nanoparticles along with base liquids to enhance the thermal attributes of pure liquids. The industry today also highly relies upon thermal machine performances, and the use of nanomaterials is the key to serve this purpose. In this research, the applications of the slip phenomenon are addressed for bioconvection applications in a non-Newtonian “Eyring–Powell” nanofluid model confined by a stretching sheet. The activation energy and nonlinear thermal radiation are taken as novel impacts during the study. The flow has been saturated by Darcy–Forchheimer porous space. The fundamental laws are attributed to formulate the governing expressions. The numerical simulations are continued employing a shooting scheme to obtain the solutions. The executive and novel physical importance of parameters that governs the flow is addressed for nanofluid velocity, temperature, concentration, and microorganisms’ profiles. The observations reveal that presence of slip parameter control the velocity but improve the heat and mass transportation phenomenon. The nanoparticles concentration increases with inertial forces and activation energy. Moreover, the bioconvection Lewis number declines the microorganism profile while increasing trend is noted for higher values of slip parameter.



中文翻译:

具有非线性热辐射和生物对流现象的 Eyring-Powell 纳米流体的 Darcy-Forchheimer 高阶滑流

摘要

最近,纳米工程已经发展到利用纳米粒子和基础液体来增强纯液体的热属性。今天的行业也高度依赖热机性能,而纳米材料的使用是实现这一目的的关键。在这项研究中,滑移现象的应用解决了非牛顿“ Eyring-Powell”中的生物对流应用” 由拉伸板限制的纳米流体模型。在研究过程中,活化能和非线性热辐射被视为新的影响。流动已被 Darcy-Forchheimer 多孔空间饱和。基本规律归因于制定管理表达式。数值模拟继续采用射击方案来获得解决方案。控制流动的参数的执行和新颖的物理重要性针对纳米流体速度、温度、浓度和微生物的分布进行了处理。观察表明,滑移参数的存在控制速度,但改善了热量和质量传输现象。纳米粒子浓度随惯性力和活化能增加。而且,

更新日期:2021-07-01
down
wechat
bug