当前位置: X-MOL 学术Anal. Math. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fractional Choquard-Kirchhoff problems with critical nonlinearity and Hardy potential
Analysis and Mathematical Physics ( IF 1.4 ) Pub Date : 2021-06-29 , DOI: 10.1007/s13324-021-00564-7
Wenjing Chen , Vicenţiu D. Rădulescu , Binlin Zhang

In this paper, we investigate the following fractional p-Kirchhoff type problem

$$\begin{aligned} \left\{ \begin{array}{ll} \left( a+b[u]_{s,p}^{p(\theta -1)}\right) (-\Delta )^s_pu = \Big ({\mathcal {I}}_\mu *|u|^q\Big )|u|^{q-2}u+\frac{|u|^{p_{\alpha }^*-2}u}{|x|^\alpha },\ u>0, &{}\text{ in }\ \Omega ,\\ u=0, \ &{} \mathrm{in}\ {\mathbb {R}}^N\backslash \Omega , \end{array} \right. \end{aligned}$$

where \([u]_{s,p}^{p}=\displaystyle \iint _{{\mathbb {R}}^{2N}} \frac{|u(x) - u(y)|^{p}}{|x - y|^{N+ps}}\, dxdy\), \(\Omega \) is a bounded smooth domain of \({\mathbb {R}}^N\) containing 0 with Lipschitz boundary, \((-\Delta )_{p}^{s}\) denotes the fractional p-Laplacian, \(0\le \alpha<ps<N\) with \(s\in (0,1)\), \(p>1\), \(a\ge 0\), \(b>0\), \(1<\theta \le p_\alpha ^*/ p\), \(p_\alpha ^*=\frac{(N-\alpha )p}{N-ps}\) is the fractional critical Hardy-Sobolev exponent, \({\mathcal {I}}_\mu (x)=|x|^{-\mu }\) is the Riesz potential of order \(\mu \in (0,\min \{N,2ps\})\), \(q\in (1, Np/(N-ps))\) satisfies some restrictions. By the concentration-compactness principle and mountain pass theorem, we obtain the existence of a positive weak solution for the above problem as q satisfies suitable ranges.



中文翻译:

具有临界非线性和哈代势的分数 Choquard-Kirchhoff 问题

在本文中,我们研究以下分数p -Kirchhoff 类型问题

$$\begin{aligned} \left\{ \begin{array}{ll} \left( a+b[u]_{s,p}^{p(\theta -1)}\right) (-\ Delta )^s_pu = \Big ({\mathcal {I}}_\mu *|u|^q\Big )|u|^{q-2}u+\frac{|u|^{p_{\alpha } ^*-2}u}{|x|^\alpha },\ u>0, &{}\text{ in }\ \Omega ,\\ u=0, \ &{} \mathrm{in}\ { \mathbb {R}}^N\backslash \Omega , \end{array} \right. \end{对齐}$$

其中\([u]_{s,p}^{p}=\displaystyle \iint _{{\mathbb {R}}^{2N}} \frac{|u(x) - u(y)|^ {p}}{|x - y|^{N+ps}}\, dxdy\) , \(\Omega \)是包含 0的\({\mathbb {R}}^N\)的有界光滑域与 Lipschitz 边界,\((-\Delta )_{p}^{s}\)表示分数p -Laplacian,\(0\le \alpha<ps<N\)\(s\in (0, 1)\) , \(p>1\) , \(a\ge 0\) , \(b>0\) , \(1<\theta \le p_\alpha ^*/ p\) , \( p_\alpha ^*=\frac{(N-\alpha )p}{N-ps}\)是分数临界 Hardy-Sobolev 指数,\({\mathcal {I}}_\mu (x)=| x|^{-\mu }\)\(\mu \in (0,\min \{N,2ps\})\)阶的 Riesz 势,\(q\in (1, Np/(N-ps))\)满足一些限制。根据集中紧性原理和山口定理,当q满足合适的范围时,我们得到上述问题的正弱解的存在性。

更新日期:2021-06-30
down
wechat
bug