当前位置: X-MOL 学术Biomech. Model. Mechanobiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonlinear multiscale analysis of coronary atherosclerotic vulnerable plaque artery: fluid-structural modeling with micromechanics
Biomechanics and Modeling in Mechanobiology ( IF 3.0 ) Pub Date : 2021-06-30 , DOI: 10.1007/s10237-021-01483-z
Eyass Massarwa 1 , Ze'ev Aronis 1 , Rami Eliasy 1 , Shmuel Einav 1 , Rami Haj-Ali 1
Affiliation  

A unique three-dimensional (3D) computational multiscale modeling approach is proposed to investigate the influence of presence of microcalcification particles on the stress field distribution in the thin cap layer of a coronary atherosclerotic vulnerable plaque system. A nested 3D modeling analysis framework spanning the multiscale nature of a coronary atherosclerotic vulnerable plaque is presented. At the microscale level, a micromechanical modeling approach, which is based on computational finite-element (FE) representative unit cell, is applied to obtain the homogenized nonlinear response of the calcified tissue. This equivalent response effectively allows the integration of extremely small microcalcification inclusions in a global biomechanical FE model. Next, at the macroscale level, a 3D patient-based fluid–structure interaction FE model, reconstructing a refined coronary artery geometry with calcified plaque lesion, is generated to study the mechanical behavior of such multi-component biomechanical system. It is shown that the proposed multiscale modeling approach can generate a higher resolution of stress and strain field distributions within the coronary atherosclerotic vulnerable plaque system and allow the assessment of the local concentration stress around the microcalcifications in plaque cap layers. A comparison of stress field distributions within cap layers with and without inclusion of microcalcifications is also presented.



中文翻译:

冠状动脉粥样硬化易损斑块动脉的非线性多尺度分析:微力学流体结构建模

提出了一种独特的三维 (3D) 计算多尺度建模方法来研究微钙化颗粒的存在对冠状动脉粥样硬化易损斑块系统薄帽层中应力场分布的影响。提出了一个嵌套的 3D 建模分析框架,涵盖了冠状动脉粥样硬化易损斑块的多尺度性质。在微观尺度上,应用基于计算有限元(FE)代表单位单元的微机械建模方法来获得钙化组织的均质非线性响应。这种等效响应有效地允许将极小的微钙化夹杂物集成到全局生物力学有限元模型中。接下来,在宏观层面,基于患者的 3D 流固耦合有限元模型,重建具有钙化斑块病变的精细冠状动脉几何形状,以研究这种多组分生物力学系统的力学行为。结果表明,所提出的多尺度建模方法可以在冠状动脉粥样硬化易损斑块系统内产生更高分辨率的应力和应变场分布,并允许评估斑块帽层中微钙化周围的局部集中应力。还提供了包含和不包含微钙化的覆盖层内的应力场分布的比较。结果表明,所提出的多尺度建模方法可以在冠状动脉粥样硬化易损斑块系统内产生更高分辨率的应力和应变场分布,并允许评估斑块帽层中微钙化周围的局部集中应力。还提供了包含和不包含微钙化的覆盖层内的应力场分布的比较。结果表明,所提出的多尺度建模方法可以在冠状动脉粥样硬化易损斑块系统内产生更高分辨率的应力和应变场分布,并允许评估斑块帽层中微钙化周围的局部集中应力。还提供了包含和不包含微钙化的覆盖层内的应力场分布的比较。

更新日期:2021-06-30
down
wechat
bug