当前位置: X-MOL 学术Mech. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigating the mechanical behavior of multiscale porous ultra-high temperature ceramics using a quasi-static material point method
Mechanics of Materials ( IF 3.4 ) Pub Date : 2021-06-30 , DOI: 10.1016/j.mechmat.2021.103976
Stefan J. Povolny , Gary D. Seidel , Carolina Tallon

Ultra-high temperature ceramics (UHTCs) are a class of materials that maintain their structural integrity at high temperatures, e.g. 2000 °C. They have been limited in their aerospace applications because of their relatively high density and the difficulty involved in forming them into complex shapes, like leading edges and inlets. Recent advanced processing techniques have made significant headway in addressing these challenges, where the introduction of multiscale porosity has resulted in lightweight UHTCs and a more tailored thermal conductivity response. The effect of porosity on the properties of UHTCs must be characterized to enable design, but doing so experimentally can be costly, especially when attempting to mimic hypersonic flight conditions. As such, this paper seeks to computationally characterize and understand the effective mechanical properties of porous UHTCs, specifically titanium diboride, and validate those results against experimental results so as to build confidence in the model. An implicit quasi-static variant of the Material Point Method (MPM) is developed, whose capabilities include intrinsic treatment of large deformations and contact which are needed to capture the post-elastic behavior of simulated porous UHTC microstructures. It is found that the MPM can approximately obtain the elastic properties of porous UHTCs without calibration, and that the post-elastic results are found to be qualitatively consistent with experimental results. With calibrated input properties, significantly improved agreement is obtained.



中文翻译:

使用准静态材料点法研究多尺度多孔超高温陶瓷的力学行为

超高温陶瓷 (UHTC) 是一类在高温(例如 2000 °C)下保持其结构完整性的材料。它们在航空航天应用中受到限制,因为它们的密度相对较高,并且难以将它们制成复杂的形状,如前缘和入口。最近的先进加工技术在解决这些挑战方面取得了重大进展,其中多尺度孔隙率的引入导致了轻质 UHTC 和更定制的热导率响应。必须表征孔隙率对 UHTC 性能的影响,才能进行设计,但通过实验来这样做可能成本高昂,尤其是在尝试模拟高超音速飞行条件时。因此,本文旨在通过计算表征和理解多孔 UHTC 的有效机械性能,特别是二硼化钛,并根据实验结果验证这些结果,以建立对模型的信心。开发了材料点法 (MPM) 的隐式准静态变体,其功能包括对大变形和接触进行内在处理,这是捕捉模拟多孔 UHTC 微结构的后弹性行为所需的。发现MPM无需校准就可以近似获得多孔UHTCs的弹性特性,并且发现后弹性结果与实验结果定性一致。使用校准的输入属性,可以获得显着改善的一致性。并根据实验结果验证这些结果,以建立对模型的信心。开发了材料点法 (MPM) 的隐式准静态变体,其功能包括对大变形和接触进行内在处理,这是捕捉模拟多孔 UHTC 微结构的后弹性行为所需的。发现MPM无需校准就可以近似获得多孔UHTCs的弹性特性,并且发现后弹性结果与实验结果定性一致。使用校准的输入属性,可以获得显着改善的一致性。并根据实验结果验证这些结果,以建立对模型的信心。开发了材料点法 (MPM) 的隐式准静态变体,其功能包括对大变形和接触进行内在处理,这是捕捉模拟多孔 UHTC 微结构的后弹性行为所需的。发现MPM无需校准就可以近似获得多孔UHTCs的弹性特性,并且发现后弹性结果与实验结果定性一致。使用校准的输入属性,可以获得显着改善的一致性。其功能包括大变形和接触的内在处理,这是捕捉模拟多孔 UHTC 微结构的后弹性行为所需的。发现MPM无需校准就可以近似获得多孔UHTCs的弹性特性,并且发现后弹性结果与实验结果定性一致。使用校准的输入属性,可以获得显着改善的一致性。其功能包括大变形和接触的内在处理,这是捕捉模拟多孔 UHTC 微结构的后弹性行为所需的。发现MPM无需校准就可以近似获得多孔UHTCs的弹性特性,并且发现后弹性结果与实验结果定性一致。使用校准的输入属性,可以获得显着改善的一致性。

更新日期:2021-07-09
down
wechat
bug