当前位置: X-MOL 学术Chem. Eng. Process. Process Intensif. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of the synergy between reaction, heat exchange and membrane separation on the process intensification of the dimethyl ether direct synthesis from carbon dioxide and hydrogen
Chemical Engineering and Processing: Process Intensification ( IF 3.8 ) Pub Date : 2021-06-30 , DOI: 10.1016/j.cep.2021.108513
Chakib R. Behloul , Jean-Marc Commenge , Christophe Castel

This work presents a comprehensible approach based on the application of characteristic times and Damköhler numbers to optimize the synergy between catalytic reaction, heat exchange and membrane separation for an exothermic balanced reaction. This approach allows the description of parameters required to reduce limitations and intensify the process, considering the DME direct synthesis from a CO2-rich feedstock as a case study. Different couplings are dealt with: reaction and heat exchange; reaction and separation; and reaction, heat exchange and separation. Coupling to a heat exchange enables to follow an optimal temperature progression and minimize the reactor volume by maximizing the reaction rate at any position, allowing the design of compact equipment adapted to delocalized production. Coupling to a membrane increases the achievable conversion at a given temperature. A trade-off between these functions is necessary to achieve the optimal conditions. Appropriate heat exchange enables proper membrane operation. Coupling to a separation improves the performance of a reactor-heat exchanger configuration. 85% of CO2 conversion may be achieved. An optimization of the catalyst distribution is proposed, reducing the total catalyst mass by 21% and hot spot intensity by about 20 °C compared to a uniform catalyst distribution for an identical outlet conversion.



中文翻译:

反应、热交换和膜分离协同作用对二氧化碳和氢气直接合成二甲醚工艺强化的影响

这项工作提出了一种基于应用特征时间和 Damköhler 数的易于理解的方法,以优化催化反应、热交换和膜分离之间的协同作用,以实现放热平衡反应。这种方法允许描述减少限制和强化过程所需的参数,考虑到从 CO 2直接合成 DME- 丰富的原料作为案例研究。处理不同的耦合:反应和热交换;反应与分离;和反应、热交换和分离。与热交换耦合能够遵循最佳温度进程并通过最大化任何位置的反应速率来最小化反应器体积,从而允许设计适合离域生产的紧凑型设备。与膜偶联增加了在给定温度下可实现的转化率。这些功能之间的权衡是实现最佳条件所必需的。适当的热交换能够实现适当的膜操作。耦合到分离提高了反应器-热交换器配置的性能。85% 的 CO 2可以实现转换。建议优化催化剂分布,与相同出口转化率的均匀催化剂分布相比,总催化剂质量减少 21%,热点强度减少约 20°C。

更新日期:2021-07-07
down
wechat
bug