当前位置: X-MOL 学术JOM › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Additive Manufacturing of Topology-Optimized Graded Porous Structures: An Experimental Study
JOM ( IF 2.1 ) Pub Date : 2021-06-01 , DOI: 10.1007/s11837-021-04705-y
Zhi Zhao , Xiaojia Shelly Zhang

Graded porous structures, combining the high stiffness of bulk designs and the robustness of porous structures, have received increasing attention in the fields of topology optimization and additive manufacturing. This study aims to experimentally investigate the properties of topology-optimized and additively manufactured graded porous structures, with comparisons to conventional bulk designs and one-level porous structures. Examples with graded porosity are designed through a unique multiporosity topology optimization framework. This multiporosity framework generalizes the concept of multiple materials; i.e., each material field has a different level of local porosity, thus realizing the automatic distribution of multilevel porosity. The optimized designs are fabricated via the mask stereolithography process using photosensitive resins. Based on three-point bending tests, we study the failure processes and the influences of material deficiency on elastic stiffness for the three types of optimized designs: bulk, one-level porous, and graded porous designs. Experimental results demonstrate that the additively manufactured optimized graded porous structures not only have relatively high structural stiffness and load-carrying capacities but also show a ductile failure mode and certain robustness against material deficiency. The presented work contributes to experimental studies on demonstrating the combined advantages of topology-optimized graded porous structures by comparing the structural performances of graded porous structures with bulk designs and one-level porous structures.



中文翻译:

拓扑优化梯度多孔结构的增材制造:实验研究

梯度多孔结构结合了整体设计的高刚度和多孔结构的稳健性,在拓扑优化和增材制造领域受到越来越多的关注。本研究旨在通过实验研究拓扑优化和增材制造的梯度多孔结构的特性,并与传统的整体设计和一级多孔结构进行比较。分级孔隙率示例是通过独特的多孔隙率拓扑优化框架设计的。这种多孔性框架概括了多种材料的概念;即每个材料场具有不同级别的局部孔隙度,从而实现多级孔隙度的自动分配。优化的设计是通过使用光敏树脂的掩模立体光刻工艺制造的。基于三点弯曲试验,我们研究了三种优化设计的失效过程和材料缺陷对弹性刚度的影响:本体、一级多孔设计和分级多孔设计。实验结果表明,增材制造的优化梯度多孔结构不仅具有较高的结构刚度和承载能力,而且还表现出韧性破坏模式和对材料缺陷的一定鲁棒性。所提出的工作有助于通过比较分级多孔结构与本体设计和一级多孔结构的结构性能来证明拓扑优化分级多孔结构的综合优势的实验研究。我们研究了三种类型的优化设计的失效过程和材料缺陷对弹性刚度的影响:本体、一级多孔设计和分级多孔设计。实验结果表明,增材制造的优化梯度多孔结构不仅具有较高的结构刚度和承载能力,而且还表现出韧性破坏模式和对材料缺陷的一定鲁棒性。所提出的工作有助于通过比较分级多孔结构与本体设计和一级多孔结构的结构性能来证明拓扑优化分级多孔结构的综合优势的实验研究。我们研究了三种类型的优化设计的失效过程和材料缺陷对弹性刚度的影响:本体、一级多孔设计和分级多孔设计。实验结果表明,增材制造的优化梯度多孔结构不仅具有较高的结构刚度和承载能力,而且还表现出韧性破坏模式和对材料缺陷的一定鲁棒性。所提出的工作有助于通过比较分级多孔结构与本体设计和一级多孔结构的结构性能来证明拓扑优化分级多孔结构的综合优势的实验研究。实验结果表明,增材制造的优化梯度多孔结构不仅具有较高的结构刚度和承载能力,而且还表现出韧性破坏模式和对材料缺陷的一定鲁棒性。所提出的工作有助于通过比较分级多孔结构与本体设计和一级多孔结构的结构性能来证明拓扑优化分级多孔结构的综合优势的实验研究。实验结果表明,增材制造的优化梯度多孔结构不仅具有较高的结构刚度和承载能力,而且还表现出韧性破坏模式和对材料缺陷的一定鲁棒性。所提出的工作有助于通过比较分级多孔结构与本体设计和一级多孔结构的结构性能来证明拓扑优化分级多孔结构的综合优势的实验研究。

更新日期:2021-06-29
down
wechat
bug