当前位置:
X-MOL 学术
›
Discret. Math.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Existence of r-self-orthogonal Latin squares
Discrete Mathematics ( IF 0.7 ) Pub Date : 2006-01-01 , DOI: 10.1016/j.disc.2005.11.012 Yunqing Xu , Yanxun Chang
Discrete Mathematics ( IF 0.7 ) Pub Date : 2006-01-01 , DOI: 10.1016/j.disc.2005.11.012 Yunqing Xu , Yanxun Chang
Two Latin squares of order v are r-orthogonal if their superposition produces exactly r distinct ordered pairs. If the second square is the transpose of the first one, we say that the first square is r-self-orthogonal, denoted by r-SOLS(v). It has been proved that for any integer v>=28, there exists an r-SOLS(v) if and only if v=
中文翻译:
r-自正交拉丁方阵的存在
如果两个 v 阶拉丁方的叠加正好产生 r 个不同的有序对,则它们是 r 正交的。如果第二个正方形是第一个正方形的转置,我们说第一个正方形是 r-自正交,用 r-SOLS(v) 表示。已经证明,对于任意整数 v>=28,存在 r-SOLS(v) 当且仅当 v=
更新日期:2006-01-01
中文翻译:
r-自正交拉丁方阵的存在
如果两个 v 阶拉丁方的叠加正好产生 r 个不同的有序对,则它们是 r 正交的。如果第二个正方形是第一个正方形的转置,我们说第一个正方形是 r-自正交,用 r-SOLS(v) 表示。已经证明,对于任意整数 v>=28,存在 r-SOLS(v) 当且仅当 v=