当前位置: X-MOL 学术J. Geod. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Resilient observation models for seafloor geodetic positioning
Journal of Geodesy ( IF 3.9 ) Pub Date : 2021-06-26 , DOI: 10.1007/s00190-021-01531-7
Yuanxi Yang , Xianping Qin

Abstract

Acoustic positioning of the seafloor geodetic network is subject to the complex ocean environment. The measurements are strongly affected by time-varying and location-varying ocean physical phenomena. At first, the differential and undifferential acoustic positioning modes are analyzed. Then, a simple resilient observational model with range bias and time bias parameters is established. After solving the location parameters of the seafloor stations together with the range bias and time bias parameters, a resilient observation model with periodic error parameters is proposed. Taking the advantage of the systematic errors implied in the residual series, a piecewise second-order polynomial was introduced to fit the residual series. The corresponding calculation steps are designed. A real seafloor geodetic network with five stations was deployed at a depth over 3000 m in the South China Sea in July, 2019, one of which was shelter-fixed and the others were rope-fixed which were called underwater auxiliary navigation beacons. The cross-configuration measurement lines were employed for the seabed station and the underwater auxiliary navigation beacons. More than 26 measurement hours of GNSS/acoustic ranging observations were collected. The results show that the resilient observational model with periodic error terms compensates for the systematic errors of the acoustic ranges very well, with the square root of variance of the coordinate component better than 0.4 cm and the root mean square errors (RMSE) of the one-way slant range residuals better than 11 cm.



中文翻译:

用于海底大地定位的弹性观测模型

摘要

海底大地网的声学定位受复杂的海洋环境影响。测量受到时变和位置变化的海洋物理现象的强烈影响。首先,对差分和非差分声学定位模式进行了分析。然后,建立了具有范围偏差和时间偏差参数的简单弹性观测模型。在求解海底台站位置参数以及距离偏差和时间偏差参数后,提出了具有周期性误差参数的弹性观测模型。利用残差序列隐含的系统误差,引入分段二阶多项式拟合残差序列。设计了相应的计算步骤。2019 年 7 月,在南海 3000 米以上深度部署了一个由 5 个站点组成的真实海底大地测量网,其中一个是避难所固定,另一个是绳索固定,称为水下辅助导航信标。海底站和水下辅助导航信标采用交叉配置测量线。收集了超过 26 个测量小时的 GNSS/声学测距观测。结果表明,具有周期误差项的弹性观测模型很好地补偿了声学范围的系统误差,坐标分量的方差平方根优于0.4 cm,均方根误差(RMSE)优于0.4 cm。 -way 斜距残差优于 11 厘米。其中一个是固定住所,另一个是绳索固定的,称为水下辅助导航信标。海底站和水下辅助导航信标采用交叉配置测量线。收集了超过 26 个测量小时的 GNSS/声学测距观测。结果表明,具有周期误差项的弹性观测模型很好地补偿了声学范围的系统误差,坐标分量的方差平方根优于0.4 cm,均方根误差(RMSE)优于0.4 cm。 -way 斜距残差优于 11 厘米。其中一个是固定住所,另一个是绳索固定的,称为水下辅助导航信标。海底站和水下辅助导航信标采用交叉配置测量线。收集了超过 26 个测量小时的 GNSS/声学测距观测。结果表明,具有周期误差项的弹性观测模型很好地补偿了声学范围的系统误差,坐标分量的方差平方根优于0.4 cm,均方根误差(RMSE)优于0.4 cm。 -way 斜距残差优于 11 厘米。海底站和水下辅助导航信标采用交叉配置测量线。收集了超过 26 个测量小时的 GNSS/声学测距观测。结果表明,具有周期误差项的弹性观测模型很好地补偿了声学范围的系统误差,坐标分量的方差平方根优于0.4 cm,均方根误差(RMSE)优于0.4 cm。 -way 斜距残差优于 11 厘米。海底站和水下辅助导航信标采用交叉配置测量线。收集了超过 26 个测量小时的 GNSS/声学测距观测。结果表明,具有周期误差项的弹性观测模型很好地补偿了声学范围的系统误差,坐标分量的方差平方根优于0.4 cm,均方根误差(RMSE)优于0.4 cm。 -way 斜距残差优于 11 厘米。

更新日期:2021-06-28
down
wechat
bug