当前位置: X-MOL 学术J. Electroceram. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthesis and dielectric enhancement of rare-earth ions substituted lanthanum tantalate solid solutions
Journal of Electroceramics ( IF 1.7 ) Pub Date : 2021-06-26 , DOI: 10.1007/s10832-021-00242-x
Gurmeet Kaur , Shalini Bahel , Sukhleen Bindra Narang

Rare earth ions (Re3+: Eu3+, Sm3+, Er3+, Dy3+) substituted solid solutions withchemicalcomposition Li(1 + x)(1-z)RezTa1-xTixO3 (x = 0.11, z = 0.025) using solid state method, with final sintering at 1150 °C for 10 h. Structural analysis of the prepared solid solutions was performed using X-ray Diffraction (XRD), Fourier Transform-Infra Red (FT-IR), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscope (TEM). XRD analysis confirmed the presence of hexagonal geometry in the synthesized solutions. Spherical shaped grains were demonstrated in the SEM micrographs, with relative density > 97%. Average particle size, obtained from the TEM images, varied in 196–272 nm range. Tauc plots show that the prepared rare earth ions doped solid solutions observe optical band gap (Eg) in 3.77–3.93 eV range. Photo-luminescence (PL) spectrum of Eu-doped LTT solid solutions exhibits a strong emission peak of red colour at emission wavelength of 624 nm. Dielectric properties of the prepared solutions showed enhancement with doping of different rare earth ions (Eu3+, Sm3+, Er3+, Dy3+). Out of all the prepared solid solutions, the highest dielectric constant was registered by erbium doped solution. As a result of doping of rare earth ions, improvement was observed in reflective properties of these samples, using open-circuit approach in X-band (8.2–12.4 GHz) frequency range. Therefore, the prepared solid solutions can be potential candidates for applications in electro-optics devices and microwave reflectors.



中文翻译:

稀土离子取代钽酸镧固溶体的合成及介电增强

稀土离子(Re 3+ : Eu 3+ , Sm 3+ , Er 3+ , Dy 3+)取代固溶体,化学成分为 Li (1 + x)(1-z) Re z Ta 1-x Ti x O 3(x = 0.11, z = 0.025) 使用固态方法,最终在 1150 °C 下烧结 10 小时。使用 X 射线衍射 (XRD)、傅里叶变换红外 (FT-IR)、扫描电子显微镜 (SEM)、能量色散光谱 (EDS) 和透射电子显微镜 (TEM) 对制备的固溶体进行结构分析。XRD 分析证实在合成溶液中存在六边形几何形状。SEM 显微照片显示球形晶粒,相对密度 > 97%。从 TEM 图像中获得的平均粒径在 196-272 nm 范围内变化。Tauc 图显示制备的稀土离子掺杂固溶体观察到光学带隙(E g) 在 3.77–3.93 eV 范围内。Eu 掺杂 LTT 固溶体的光致发光 (PL) 光谱在 624 nm 的发射波长处显示出强烈的红色发射峰。所制备溶液的介电性能随着掺杂不同稀土离子(Eu 3+、Sm 3+、Er 3+、Dy 3+)而增强。在所有制备的固溶体中,掺铒溶液的介电常数最高。由于掺杂稀土离子,在 X 波段 (8.2-12.4 GHz) 频率范围内使用开路方法观察到这些样品的反射特性得到改善。因此,制备的固溶体可作为电光器件和微波反射器应用的潜在候选者。

更新日期:2021-06-28
down
wechat
bug