当前位置: X-MOL 学术Thin-Walled Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigating ballistic resistance of CFRP/polyurea composite plates subjected to ballistic impact
Thin-Walled Structures ( IF 6.4 ) Pub Date : 2021-06-26 , DOI: 10.1016/j.tws.2021.108111
Qiang Liu , Baoqiao Guo , Pengwan Chen , Jianjun Su , Ali Arab , Gang Ding , Guanghu Yan , Haiyan Jiang , Feng Guo

As composite structures develop, polyurea coating has been applied to improve the protective performance of multi-layered composite structures subjected to blast or impact loading. In order to investigate the ballistic resistance of polyurea coated Carbon Fiber Reinforced Plastics (CFRP) composites, impact experiments were conducted using a 14.5 mm ballistic gun with cylindrical projectile. The effect of polyurea coating position and coating thickness were analyzed and discussed. The impact velocity of projectile was selected from 600 m/s to 1406 m/s for polyurea coated CFRP composite plates. The energy absorption ratios were calculated to assess the ballistic behavior. Damage zone of CFRP plates were determined by ultrasonic C-scan images. The failure mechanism of CFRP laminates and polyurea were analyzed by an optical microscope and scanning electron microscopy (SEM). The results showed that the deformation of projectiles increased with the increase of initial impact velocity. Energy absorption ratio and damage level of RPU2 configuration was better than pure CFRP plates. The optical microscope and SEM images showed that failure modes were compression-shear failure on the front side of polyurea, tension-shear failure, petaling failure, spallation and punching perforation failure on the rear side of polyurea. Overall, polyurea coating can significantly boost the composite plates’ ballistic performance when spraying polyurea on the CFRP composites’ rear side.



中文翻译:

CFRP/聚脲复合板在弹道冲击下的防弹性能研究

随着复合结构的发展,聚脲涂层已被应用于提高多层复合结构承受爆炸或冲击载荷的保护性能。为了研究聚脲涂层碳纤维增强塑料 (CFRP) 复合材料的弹道阻力,使用带有圆柱形弹丸的 14.5 毫米弹道枪进行了冲击实验。分析讨论了聚脲涂层位置和涂层厚度的影响。对于聚脲涂层碳纤维复合材料板,弹丸的冲击速度从 600 m/s 到 1406 m/s 选择。计算能量吸收比以评估弹道行为。CFRP 板的损伤区由超声 C 扫描图像确定。通过光学显微镜和扫描电子显微镜(SEM)分析了CFRP层压板和聚脲的失效机理。结果表明,弹丸的变形随着初始冲击速度的增加而增大。RPU2配置的能量吸收率和损伤水平优于纯CFRP板。光学显微镜和扫描电镜图像表明,聚脲表面的破坏模式为聚脲正面压缩-剪切破坏、拉剪破坏、花瓣状破坏、聚脲背面散裂和冲孔破坏。总体而言,在 CFRP 复合材料的背面喷涂聚脲时,聚脲涂层可以显着提高复合板的防弹性能。结果表明,弹丸的变形随着初始冲击速度的增加而增大。RPU2配置的能量吸收率和损伤水平优于纯CFRP板。光学显微镜和扫描电镜图像表明,聚脲表面的破坏模式为聚脲正面压缩-剪切破坏、拉剪破坏、花瓣状破坏、聚脲背面散裂和冲孔破坏。总体而言,在 CFRP 复合材料的背面喷涂聚脲时,聚脲涂层可以显着提高复合板的防弹性能。结果表明,弹丸的变形随着初始冲击速度的增加而增大。RPU2配置的能量吸收率和损伤水平优于纯CFRP板。光学显微镜和扫描电镜图像表明,聚脲表面的破坏模式为聚脲正面压缩-剪切破坏、拉剪破坏、花瓣状破坏、聚脲背面散裂和冲孔破坏。总体而言,在 CFRP 复合材料的背面喷涂聚脲时,聚脲涂层可以显着提高复合板的防弹性能。聚脲背面的花瓣破裂、剥落和冲孔破裂。总体而言,在 CFRP 复合材料的背面喷涂聚脲时,聚脲涂层可以显着提高复合板的防弹性能。聚脲背面的花瓣破裂、剥落和冲孔破裂。总体而言,在 CFRP 复合材料的背面喷涂聚脲时,聚脲涂层可以显着提高复合板的防弹性能。

更新日期:2021-06-28
down
wechat
bug