当前位置: X-MOL 学术IEEE Ind. Electron. Mag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hierarchical Control of Space Closed Ecosystems: Expanding Microgrid Concepts to Bioastronautics
IEEE Industrial Electronics Magazine ( IF 5.6 ) Pub Date : 2021-01-18 , DOI: 10.1109/mie.2020.3026828
Carles Ciurans , Najmeh Bazmohammadi , Juan C. Vasquez , Gilles Dussap , Josep M. Guerrero , Francesc Godia

One of the main challenges of human space exploration is the development of artificial ecosystems, which can be used as life support systems (LSSs) to enable long-duration human space missions. In an open LSS, no food generation or waste treatment is provided in space, and supplies from Earth are necessary. According to Figure 1, considering the approximate metabolic consumables and hygiene water as well as the number of crewmembers [1], a huge mass would be required to be transported from Earth, which brings the necessity of a regenerative or closed LSS [2]-[4]. Closed ecological systems (CESs) are ecosystems without any matter exchange with the outside environment [2]. The most advanced humanmade CESs include Advanced Life Support System Test Bed (ALSSTB) (the NASA Johnson Space Research Center, Houston, Texas), Biosphere 2 (Oracle, Arizona), BIOS-3 (Krasnoyarsk, Russia-no longer operative), the Closed Ecology Experiment Facility (CEEF) complex (Rokkasho, Japan), the Micro-Ecological Life Support System Alternative (MELiSSA) Pilot Plant (MPP) (Universitat Aut?noma de Barcelona, Spain), and the Concordia Antarctica Station, which are different from one another with respect to their complexity, size, and degree of closure [2]. CESs are necessary for long-term manned space missions, which aim to minimize support from Earth. They are composed of several specific compartments that, together, reproduce the main functionalities of an ecological system in a continuous mode of operation and under controlled conditions.

中文翻译:

空间封闭生态系统的分级控制:将微电网概念扩展到生物航天

载人航天探索的主要挑战之一是人造生态系统的发展,它可以用作生命支持系统 (LSS),以实现长期载人航天任务。在开放式 LSS 中,太空中不提供食物生产或废物处理,需要来自地球的供应。根据图1,考虑到近似的代谢消耗品和卫生用水以及机组人员的数量[1],需要从地球运输巨大的质量,这就带来了再生或封闭式LSS的必要性[2]- [4]。封闭生态系统(CES)是与外界环境没有任何物质交换的生态系统[2]。最先进的人造 CES 包括高级生命支持系统试验台 (ALSSTB)(美国宇航局约翰逊空间研究中心,德克萨斯州休斯顿)、生物圈 2(甲骨文,亚利桑那州)、BIOS-3(俄罗斯克拉斯诺亚尔斯克-不再运行)、封闭生态实验设施(CEEF)综合体(日本六所村)、微生态生命支持系统替代(MELiSSA)试验工厂(MPP)(Universitat Aut?noma de西班牙巴塞罗那)和 Concordia 南极站,它们在复杂性、规模和关闭程度方面彼此不同 [2]。CES 是长期载人航天任务所必需的,这些任务旨在最大限度地减少来自地球的支持。它们由几个特定的​​隔间组成,它们共同以连续的操作模式和受控条件再现生态系统的主要功能。微生态生命支持系统替代 (MELiSSA) 试验工厂 (MPP)(西班牙巴塞罗那自治大学)和 Concordia 南极站,它们在复杂性、规模和程度方面各不相同。关闭[2]。CES 是长期载人航天任务所必需的,这些任务旨在最大限度地减少来自地球的支持。它们由几个特定的​​隔间组成,它们共同以连续的操作模式和受控条件再现生态系统的主要功能。微生态生命支持系统替代 (MELiSSA) 试验工厂 (MPP)(西班牙巴塞罗那自治大学)和 Concordia 南极站,它们在复杂性、规模和程度方面各不相同。关闭[2]。CES 是长期载人航天任务所必需的,这些任务旨在最大限度地减少来自地球的支持。它们由几个特定的​​隔间组成,它们共同以连续的操作模式和受控条件再现生态系统的主要功能。旨在最大限度地减少来自地球的支持。它们由几个特定的​​隔间组成,它们共同以连续的操作模式和受控条件再现生态系统的主要功能。旨在最大限度地减少来自地球的支持。它们由几个特定的​​隔间组成,它们共同以连续的操作模式和受控条件再现生态系统的主要功能。
更新日期:2021-01-18
down
wechat
bug