当前位置: X-MOL 学术Aircr. Eng. Aerosp. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimal propeller blade design, computation, manufacturing and experimental testing
Aircraft Engineering and Aerospace Technology ( IF 1.2 ) Pub Date : 2021-06-24 , DOI: 10.1108/aeat-03-2021-0091
Aleksandar Kovačević , Jelena Svorcan , Mohammad Sakib Hasan , Toni Ivanov , Miroslav Jovanović

Purpose

Modern unmanned air vehicles (UAVs) are usually equipped with rotors connected to electric motors that enable them to hover and fly in all directions. The purpose of the paper is to design optimal composite rotor blades for such small UAVs and investigate their aerodynamic performances both computationally and experimentally.

Design/methodology/approach

Artificial intelligence method (genetic algorithm) is used to optimize the blade airfoil described by six input parameters. Furthermore, different computational methods, e.g. vortex methods and computational fluid dynamics, blade element momentum theory and finite element method, are used to predict the aerodynamic performances of the optimized airfoil and complete rotor as well the structural behaviour of the blade, respectively. Finally, composite blade is manufactured and the rotor performance is also determined experimentally by thrust and torque measurements.

Findings

Complete process of blade design (including geometry definition and optimization, estimation of aerodynamic performances, structural analysis and blade manufacturing) is conducted and explained in detail. The correspondence between computed and measured thrust and torque curves of the optimal rotor is satisfactory (differences mostly remain below 15%), which validates and justifies the used design approach formulated specifically for low-cost, small-scale propeller blades. Furthermore, the proposed techniques can easily be applied to any kind of rotating lifting surfaces including helicopter or wind turbine blades.

Originality/value

Blade design methodology is simplified, shortened and made more flexible thus enabling the fast and economic production of propeller blades optimized for specific working conditions.



中文翻译:

优化螺旋桨叶片设计、计算、制造和实验测试

目的

现代无人驾驶飞行器 (UAV) 通常配备连接到电动机的转子,使它们能够在各个方向盘旋和飞行。本文的目的是为这种小型无人机设计最佳复合转子叶片,并通过计算和实验研究它们的空气动力学性能。

设计/方法/方法

采用人工智能方法(遗传算法)对六个输入参数描述的叶片翼型进行优化。此外,不同的计算方法,如涡流法和计算流体动力学、叶片元动量理论和有限元法,分别用于预测优化翼型和完整转子的气动性能以及叶片的结构行为。最后,制造复合材料叶片,转子性能也通过推力和扭矩测量实验确定。

发现

对叶片设计的完整过程(包括几何定义和优化、气动性能估计、结构分析和叶片制造)进行了详细的阐述和解释。最佳转子的计算和测量推力和扭矩曲线之间的对应关系是令人满意的(差异大多保持在 15% 以下),这验证并证明了专为低成本、小型螺旋桨叶片制定的所用设计方法。此外,所提出的技术可以很容易地应用于任何类型的旋转升力表面,包括直升机或风力涡轮机叶片。

原创性/价值

叶片设计方法被简化、缩短并变得更加灵活,从而能够快速经济地生产针对特定工作条件进行优化的螺旋桨叶片。

更新日期:2021-06-25
down
wechat
bug