当前位置: X-MOL 学术Bull. Eng. Geol. Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study on the constitutive model of the whole process of macroscale and mesoscale shear damage of prestressed anchored jointed rock
Bulletin of Engineering Geology and the Environment ( IF 3.7 ) Pub Date : 2021-06-25 , DOI: 10.1007/s10064-021-02332-0
Yang Song , Yongqi Li

The anchor prestress loss is one of the main factors influencing the stability of deep anchored rock masses, and the shear damage law of prestressed anchored rock masses should be thoroughly studied. To examine the shear law of prestressed anchored jointed rock masses, stress–strain curves of jointed, anchored, and prestressed anchored jointed rock masses of different rock strengths were analysed through laboratory tests, constitutive models, and macroscale and microscale methods. The results reveal that with increasing specimen strength and anchorage mode, the specimen shear strength and tangential stiffness follow the order of prestressed anchored jointed rock mass > anchored jointed rock mass > jointed rock mass. The higher the strength of the rock mass specimen, the greater the resistance to shear deformation of the specimen under the coupling action of the prestressed anchor rod. The smaller the displacement, the greater the shear strength, that is, the smaller the rock. There is no obvious drop in the shear strength of the rock mass, while the drop in the larger rock mass strength curve is obvious. The jointed rock mass deformation mechanism is affected by bolt and prestress application; compared with jointed rock mass, the deformation and failure mechanism of prestressed anchorage jointed rock mass are more complex and changeable, and the prestressed anchored jointed rock mass failure process is mainly divided into elastic rise, yield, and plastic strengthening stages. According to microscopic analysis, the shear failure process is divided into three stages, pore compression, aggregation, and coalescence stages; the prestress to initial prestress ratio at different times is defined as a new damage variable, and the Gurson-Tvergaard-Needleman (GTN) model for mesoscale rock mass analysis is combined with the Weibull distribution of the loss theory to determine the loss and external prestress loss through testing and model fitting analysis. The model accuracy is verified. The method of assessing macro and microscale aspects is applied to accurately describe and qualitatively analyse the shear damage law of anchored jointed rock masses, providing a new research idea for rock mass damage studies.



中文翻译:

预应力锚固节理岩宏观和中尺度剪切损伤全过程本构模型研究

锚杆预应力损失是影响深部锚固岩体稳定性的主要因素之一,应深入研究预应力锚固岩体的剪切破坏规律。为了检验预应力锚固节理岩体的剪切规律,通过室内试验、本构模型以及宏观和微观尺度方法,分析了不同岩石强度的节理、锚固和预应力锚固节理岩体的应力应变曲线。结果表明,随着试件强度和锚固方式的增加,试件抗剪强度和切向刚度的顺序为预应力锚固节理岩体>锚固节理岩体>节理岩体。岩体试件的强度越高,试件在预应力锚杆耦合作用下的抗剪变形能力越大。位移越小,抗剪强度越大,即岩石越小。岩体抗剪强度无明显下降,较大岩体强度曲线下降明显。节理岩体变形机制受锚杆和预应力施加的影响;与节理岩体相比,预应力锚固节理岩体的变形破坏机理更加复杂多变,预应力锚固节理岩体的破坏过程主要分为弹性上升、屈服和塑性强化阶段。根据微观分析,剪切破坏过程分为三个阶段,孔隙压缩、聚集、和聚结阶段;将不同时刻的预应力与初始预应力比定义为一个新的损伤变量,中尺度岩体分析的 Gurson-Tvergaard-Needleman (GTN) 模型结合损失理论的威布尔分布确定损失和外部预应力损失通过测试和模型拟合分析。验证了模型的准确性。应用宏观和微观两个方面的评价方法,准确描述和定性分析锚固节理岩体的剪切损伤规律,为岩体损伤研究提供新的研究思路。将用于中尺度岩体分析的 Gurson-Tvergaard-Needleman (GTN) 模型与损失理论的威布尔分布相结合,通过测试和模型拟合分析确定损失和外部预应力损失。验证了模型的准确性。应用宏观和微观两个方面的评价方法,准确描述和定性分析锚固节理岩体的剪切损伤规律,为岩体损伤研究提供新的研究思路。将用于中尺度岩体分析的 Gurson-Tvergaard-Needleman (GTN) 模型与损失理论的威布尔分布相结合,通过测试和模型拟合分析确定损失和外部预应力损失。验证了模型的准确性。应用宏观和微观两个方面的评价方法,准确描述和定性分析锚固节理岩体的剪切损伤规律,为岩体损伤研究提供新的研究思路。

更新日期:2021-06-25
down
wechat
bug