当前位置: X-MOL 学术Sci. Bull. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Brittle-to-ductile transition in Ti–Pt intermetallic compounds
Science Bulletin ( IF 18.8 ) Pub Date : 2021-06-25 , DOI: 10.1016/j.scib.2021.06.021
Beikai Zhao 1 , Qinghua Zhang 2 , Xiaoqian Fu 1 , Dongxu Qiao 3 , Ling Zhang 4 , Xiao Chen 5 , Lin Gu 2 , Yiping Lu 3 , Qian Yu 1
Affiliation  

Phase transformation changes numerous properties of materials. Ti–Pt alloys have received much interest because of high martensitic transformation temperature. However, the intrinsic brittleness of these intermetallic compounds with low crystal symmetry and complicated phase structure limit their applications, especially when composition deviates from stoichiometry ratio. By performing in situ heating high-resolution scanning transmission electron microscopy experiment and micro-mechanical testing on Ti-35 at% Pt that contained majorly Ti3Pt and αTiPt phases, it was found that precipitating herringbone twinned αTiPt islands within Ti3Pt could occur upon heating, significantly refining mixed-phase structure. The refinement of multi-intermetallic mixed-phase structure endowed brittle material with remarkable capacity for plastic deformation and strain hardening. The plastic deformation mechanisms include phase transformation upon yielding and dislocation slips during hardening, which rarely occurs in intermetallic compounds with low symmetry. The strong interaction between different deformation modes even caused nano-crystallization along slip bands. The results demonstrate that brittle-to-ductile transition in intermetallic compounds can be achieved by tuning mixed-phase structure through phase transformations.



中文翻译:

Ti-Pt 金属间化合物的脆韧转变

相变会改变材料的许多特性。由于高马氏体转变温度,Ti-Pt 合金受到了广泛关注。然而,这些具有低晶体对称性和复杂相结构的金属间化合物的固有脆性限制了它们的应用,特别是当组成偏离化学计量比时。通过对主要含有Ti 3 Pt和αTiPt相的Ti-35 at% Pt进行原位加热高分辨率扫描透射电子显微镜实验和微观机械测试,发现在Ti 3中析出人字形孪晶αTiPt岛Pt 可在加热时生成,显着细化混相结构。多金属间化合物混相结构的细化赋予脆性材料显着的塑性变形和应变硬化能力。塑性变形机制包括屈服时的相变和硬化过程中的位错滑移,这在低对称性的金属间化合物中很少发生。不同变形模式之间的强相互作用甚至导致沿滑带的纳米结晶。结果表明,通过相变调整混合相结构可以实现金属间化合物的脆韧转变。

更新日期:2021-06-25
down
wechat
bug