当前位置: X-MOL 学术Compos. Part B Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Combining ultrasound directed self-assembly and stereolithography to fabricate engineered polymer matrix composite materials with anisotropic electrical conductivity
Composites Part B: Engineering ( IF 12.7 ) Pub Date : 2021-06-24 , DOI: 10.1016/j.compositesb.2021.109096
K. Niendorf , B. Raeymaekers

Engineered polymer matrix composite materials with designer electrical properties are important for a myriad of engineering applications including flexible electronics, electromagnetic shielding, and materials with embedded electrical wiring. However, existing fabrication methods are limited by material choice and dimensional scalability. We use the acoustic radiation force associated with a standing ultrasound wave field to spatially arrange and align electrically conductive microfibers dispersed in a photopolymer matrix in user-specified orientations and use stereolithography to solidify the material. We relate the electrical conductivity of the material specimens to the fabrication process parameters, including ultrasound transducer power, microfiber alignment, and microfiber weight fraction. Logistic regression analysis demonstrates that the probability that a composite material specimen is electrically conductive increases with increasing microfiber weight fraction and microfiber alignment because these parameters drive the formation of a long-range percolated network of electrically conductive microfibers. We determine that the electrical conductivity of conductive specimens ranges between 31 – 793 S/m and that the fabrication process parameters are critical in predicting whether a composite material specimen is electrically conductive or insulating. Relating the composite material fabrication process parameters to the resulting electrical conductivity is a crucial step towards fabricating polymer matrix composite materials with designer electrical properties for use in engineering applications. The combined ultrasound DSA and SLA fabrication process works independent of fiber and matrix material properties and facilitates dimensional scalability due to low attenuation of ultrasound waves in viscous media.



中文翻译:

结合超声定向自组装和立体光刻技术制造具有各向异性导电性的工程聚合物基复合材料

具有设计人员电气特性的工程聚合物基复合材料对于无数工程应用非常重要,包括柔性电子、电磁屏蔽和带有嵌入式电线的材料。然而,现有的制造方法受到材料选择和尺寸可扩展性的限制。我们使用与驻留超声波场相关的声辐射力,以用户指定的方向在空间上排列和对齐分散在光聚合物基质中的导电微纤维,并使用立体光刻技术来固化材料。我们将材料样品的电导率与制造工艺参数联系起来,包括超声换能器功率、微纤维排列和微纤维重量分数。Logistic 回归分析表明,复合材料试样导电的可能性随着微纤维重量分数和微纤维排列的增加而增加,因为这些参数推动了导电微纤维长距离渗透网络的形成。我们确定导电样品的电导率范围在 31 – 793 S/m 之间,并且制造工艺参数对于预测复合材料样品是导电还是绝缘至关重要。将复合材料制造工艺参数与由此产生的电导率联系起来,是制造聚合物基复合材料的关键步骤,该复合材料具有设计好的电气特性,用于工程应用。

更新日期:2021-06-28
down
wechat
bug