当前位置: X-MOL 学术Prog. Nucl. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Direct whole core modeling and simulation of the SPERT III E-Core experiments by nTRACER
Progress in Nuclear Energy ( IF 2.7 ) Pub Date : 2021-06-24 , DOI: 10.1016/j.pnucene.2021.103824
Junsu Kang , Min Ryu , Seungug Jae , Hyeongseog Kim , Han Gyu Joo

The SPERT III E-core experiments are modeled and simulated by a direct whole core calculation code nTRACER as an effort to validate its dynamics calculation capability. The control rod ejection experiments performed for the E-core of the Special Power Excursion Reactor are faithfully modeled by explicitly representing all the complex components such as fuel cans and the cruciform transient rod. The unknown experiment conditions such as the initial position of the ejected rod is estimated rigorously to yield the proper rod worth. The simulations are performed in the one-step manner such that the entire calculation for rod ejection is carried out with a single input deck without any prior calculation. All the kinetics data such as the fractions and decay constants of the delayed neutron precursors are directly obtained from the suitable evaluated nuclear data files. Doppler feedback is modeled by the direct estimation of the fuel temperature profiles inside each pellet. The transient results for the five ejection tests are compared with the measured data such as the peak time and magnitude of the power pulse, the net power release up to the power peak, and the post-burst power level. The good agreement between the nTRACER results and measured data demonstrates the efficacy of direct whole core dynamics calculation as well as the accuracy of nTRACER. In addition, a comparison is made with a two-step calculation to demonstrate the advantage of the direct whole core transient calculation.



中文翻译:

使用 nTRACER 对 SPERT III E-Core 实验进行直接整个核心建模和模拟

SPERT III E-core 实验由直接的整体核心计算代码 nTRACER 建模和模拟,以验证其动力学计算能力。通过明确表示所有复杂组件(例如燃料罐和十字形瞬变棒),对特殊动力偏移反应堆的 E 堆芯进行的控制棒喷射实验忠实地建模。未知的实验条件(例如弹出棒的初始位置)经过严格估计,以产生适当的棒价值。模拟以一步的方式进行,因此整个弹射计算都是在一个输入平台上进行的,无需任何事先计算。所有动力学数据,如延迟中子前体的分数和衰变常数,都是直接从合适的评估核数据文件中获得的。多普勒反馈是通过直接估计每个芯块内的燃料温度分布来建模的。将五次喷射测试的瞬态结果与测量数据进行比较,例如功率脉冲的峰值时间和幅度、达到功率峰值的净功率释放以及爆发后功率水平。nTRACER 结果与测量数据之间的良好一致性证明了直接整个核心动力学计算的有效性以及 nTRACER 的准确性。此外,还与两步计算进行了比较,以证明直接整个堆芯瞬态计算的优势。多普勒反馈是通过直接估计每个芯块内的燃料温度分布来建模的。将五次喷射测试的瞬态结果与测量数据进行比较,例如功率脉冲的峰值时间和幅度、达到功率峰值的净功率释放以及爆发后功率水平。nTRACER 结果与测量数据之间的良好一致性证明了直接整个核心动力学计算的有效性以及 nTRACER 的准确性。此外,还与两步计算进行了比较,以证明直接整个堆芯瞬态计算的优势。多普勒反馈是通过直接估计每个芯块内的燃料温度分布来建模的。将五次喷射测试的瞬态结果与测量数据进行比较,例如功率脉冲的峰值时间和幅度、达到功率峰值的净功率释放以及爆发后功率水平。nTRACER 结果与测量数据之间的良好一致性证明了直接整个核心动力学计算的有效性以及 nTRACER 的准确性。此外,还与两步计算进行了比较,以证明直接整个堆芯瞬态计算的优势。直到功率峰值的净功率释放,以及爆发后的功率水平。nTRACER 结果与测量数据之间的良好一致性证明了直接整个核心动力学计算的有效性以及 nTRACER 的准确性。此外,还与两步计算进行了比较,以证明直接整个堆芯瞬态计算的优势。直到功率峰值的净功率释放,以及爆发后的功率水平。nTRACER 结果与测量数据之间的良好一致性证明了直接整个核心动力学计算的有效性以及 nTRACER 的准确性。此外,还与两步计算进行了比较,以证明直接整个堆芯瞬态计算的优势。

更新日期:2021-06-24
down
wechat
bug